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Richman games are zero-sum games, where in each turn players bid in order to determine 
who will play next (Lazarus et al., 1999). We extend the theory to impartial general-sum 
two player games called bidding games, showing the existence of pure subgame-perfect 
equilibria (PSPE). In particular, we show that PSPEs form a semilattice, with a unique and 
natural Bottom Equilibrium.
Our main result shows that if only two actions available to the players in each node, then 
the Bottom Equilibrium has additional properties: (a) utilities are monotone in budget; 
(b) every outcome is Pareto-efficient; and (c) any Pareto-efficient outcome is attained for 
some budget.
In the context of combinatorial bargaining, we show that a player with a fraction of X%
of the total budget prefers her allocation to X% of the possible allocations. In addition, 
we provide a polynomial-time algorithm to compute the Bottom Equilibrium of a binary 
bidding game.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Are game-theorists better at playing games? Game-theory and game-playing are often considered to have distinct pur-
poses and different sets of required skills. Exceptional points of intersection are games that are both fun to play and possess 
interesting theoretical properties; among those, a particularly exquisite example is Bidding Chess.1 Unlike standard Chess 
where turns are alternating among white and black, in the bidding version players each start with a fixed budget, and bid
at the beginning of each turn. The higher bidder has the right to play next after paying her bid to the other player. It is 
thus possible for example that a player will move 3 pieces before the other player makes a single move. Yet one needs to 
carefully balance the bids for the different moves, or else she could lose too much of her budget, leaving her unable to take 
advantage of her position in the game. Indeed, even the bidding variation of the simple Tic-Tac-Toe game is non-trivial to 
play, and our personal experience shows that often a game where one player seems to lead gets turned over.2

These bidding variations of popular recreational games are special cases of a wider class of games known as Richman 
Games: A Richman game is very similar to a combinatorial game (Albert et al., 2007), in that it consists of a directed graph 
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of states (e.g. board states of the Chess game), where states without outgoing edges assign victory either to the black player 
or to the white player. In contrast to standard combinatorial games where turns are alternating, a bidding game starts with 
an initial budget allocation, and in each turn players bid for the right to play next. The higher bidder pays her bid to the lower 
bidder, and chooses a directed edge to follow, until either a white or a black terminal is reached. Richman games have been 
formally studied by Lazarus et al. (1999) (and later by Develin and Payne, 2010), whose main contribution was a surprising 
connection with random-turn games. See Section 8.1 for more details on Richman games and other variations of bidding 
games.

However, a zero-sum game with bidding phases is still a zero-sum game, and to the best of our knowledge, bidding 
games with general utility functions have not been previously studied. In this work, we extend the model to general-sum 
two player games by adding bidding phases to an arbitrary extensive form game. Whereas zero-sum games have a value
that each player can guaranty, when extending the definition to general-sum games we can only talk about equilibrium. 
The standard solution concept studied in extensive-form game is pure subgame-perfect equilibrium (PSPE), meaning that each 
player is playing a best-response to the other player at any subtree of the game. Indeed, the purpose of this work is to 
study the existence and properties of PSPE in general-sum bidding games. We highlight that this is a natural extension of 
previous work on zero-sum games, since the value of a zero-sum game is a special case of a PSPE outcome.

Other than the pure theoretical interest in such results, many social and economic interactions can be formalized as 
two-player extensive form games. For example, we can consider two agents bargaining over a set of heterogeneous items. 
Then any sequential bargaining protocol is in fact an extensive form game (with complete information), where the utilities 
for players are the respective values of the subsets of items they get in the end. Indeed, several bargaining and arbitration 
protocols have been suggested in the literature, some of them of a sequential nature (see Section 8.1). We can thus use 
bidding phases as above to design a new bargaining mechanism called sequential scrip bargaining (SSB): The agents each start 
with some fixed budget (reflecting their relative power or entitlement), and use this budget to bid over items auctioned in 
some order. As mechanism design often deals with efficiency and fairness of proposed mechanisms, it is natural to ask e.g. 
whether the equilibrium outcomes of SSB correspond to efficient and/or fair allocations.

Paper structure and contribution. The definition of bidding games and some examples are provided in Section 2. In Section 3, 
we show that under a mild assumption on tie-breaking, every bidding game admits at least one PSPE. Further, the set of all 
PSPEs forms a meet-semilattice, whose lowest point is termed the Bottom Equilibrium.

Our main result is given in Section 4, and it states that in any bidding game over a binary tree (when at every stage 
of the game there are two possible actions), the Bottom Equilibrium can be computed by simulating an ascending auction. 
Further, it admits three desirable properties: (a) each player’s utility is weakly monotone in her budget; (b) a Pareto-efficient 
outcome is reached for any initial budget; and (c) for any Pareto-efficient outcome there is an initial budget such that this 
outcome is attained. We complement this result by showing that none of the above properties is guaranteed in non-binary 
trees. A key lemma required for the main theorem shows that the Bottom Equilibrium has a simple structure and is not 
sensitive to small budget fluctuations.

In Section 6 we analyze the properties of the SSB mechanism informally described above, when the agents have arbitrary 
combinatorial valuations over items. As a direct corollary from our main theorem, we get that the mechanism guarantees a 
Pareto-efficient allocation for any valuation functions agents have over subsets of items. We further show that the allocation 
is fair in the sense that an agent with a fraction of X% of the total budget prefers her allocation to X% of the possible 
allocations, a criterion known as minimal satisfaction test (De Clippel et al., 2012).

Finally, we prove in Section 7 that any binary bidding game can be solved in time that is polynomial in the number 
of states, and show how such an algorithm can be used to efficiently find the Bottom Equilibrium in SSBs with additive 
valuations and other succinct representations of valuations.

2. Model

For an integer k, we denote the set {1, 2, . . . , k} by [k]. Unless explicitly mentioned otherwise, we assume that N = {1, 2}, 
i.e. that there are only two competing agents (sometimes called players or bidders). We use the notation −i (instead of 3 − i) 
to denote the player that is not i. We name player 1 the white player, and player 2 the black player.

2.1. Bidding games

We first define the game structure that is common to combinatorial games, random-turn games and bidding games. The 
bidding process which is unique to bidding games is defined below.

Definition 1. An game structure is a tuple G = 〈S, s0, T , g1, g2, u1, u2〉, where:

• S is a set of game states;
• s0 ∈ S is the initial state;
• T ⊆ S is a set of terminal states;
• gi : (S \ T ) → 2S defines the optional moves of player i in state s ∈ S \ T ;
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Fig. 1. The game Gmaj. White wins in white terminals, black wins in black. Double arrows mark the game play in the example.

• ui : T → R defines the utility for player i in each terminal t ∈ T .

We make the following assumptions about the transition functions gi . First, unless specified otherwise, we assume that 
there are no cycles. Formally, there is no sequence s1, s2, . . . , sk where sk = s1 and s j+1 ∈ g1(s j) ∪ g2(s j) for all j < k. Second, 
unless specified otherwise, we assume that in every non-terminal state both players can play. Formally, that gi (s) 	= ∅ for all 
i ∈ N, s ∈ S \ T . The utility function ui induces a complete preference order over terminals T (see also Sec. 3.2). We denote 
t �i t′ whenever ui(t) ≥ ui(t′). Given a game structure G and s ∈ S , we denote by G|s the subgame of G rooted in s. The 
height of s is the maximal distance between s and a leaf t ∈ T (G|s). In particular, height(G) = height(s0).

The following two properties are structural properties of the underlying game tree/DAG:

Definition 2. A game structure G is impartial, if g1(s) = g2(s) for all s ∈ S . That is, if the same set of moves is available to 
both players in every state.

Unless specified otherwise, all games in this paper are impartial. In impartial games we only need to specify one transi-
tion function g(s).3

Definition 3. A game structure G is binary, if |g(s)| ≤ 2 for all s ∈ S \ T .

Playing a bidding game. In order to complete the definition of a game, we also need a method to determine who plays at 
every turn. Traditionally, there is a turn function that assigns the current player for every state (e.g., alternating turns in 
Nim and other combinatorial games). Another way is to randomly select the current player in each turn, as in Peres et al. 
(2007). In this work we follow the bidding framework of Lazarus et al. (1999); Develin and Payne (2010), where each player 
has an initial budget Bi that is used for the bidding. The higher bidder pays her bid to the lower bidder, so that the total 
budget B1 + B2 = 1 is constant throughout the game.

We begin with an informal description of the strategies and an example.
In each turn (suppose at state s), each player submits a bid bi ≤ Bi , and a “next state” s∗

i ∈ g(s), which is realized in case 
i wins the round. We break ties in favor of player 1. Then the winner (say, i∗) pays her bid to the loser −i∗ and the game 
proceeds from state s∗

i∗ with the modified budgets Bi∗ − bi∗ , B−i∗ + bi∗ .
We consider both discrete and continuous bids. Finite resolution means that all bids and budgets are multiples of ε = 1

R ′
for some integer R ′ . We say that ε is high resolution if R ′ = R · 2k where k = height(G) and R ≥ 4 is an even integer. In 
particular it means that 1

ε is at least exponential in the height of the tree. Throughout most of the paper, we will assume a 
high finite resolution. Later in Sections 4.3 and 5 we consider the consequences of small and infinite resolutions, respectively.

For a given ε , we denote by Bε = {(B1, B2) s.t. B1 + B2 = 1, and B1
ε , B2

ε ∈ N} the set of possible budget partitions. We 
omit the subscript ε when clear from context. Since in either case the total budget is fixed, B2 can always be inferred from 
B1 and vice versa. We therefore identify Bε with {0, ε, 2ε, . . . , 1} and use either B1 or B2 to denote a particular budget 
partition.

Definition 4. A (discrete) bidding game is a pair 〈G, ε〉, where G is a game structure as per Definition 1, and ε = 1
R ′ (for 

some integer R ′) is the resolution of budgets and bids.

Note that a bidding game 〈G, ε〉 is in fact a collection of 1
ε + 1 different games, one for every initial budget partition 

B1 = 0, ε, 2ε, . . . , 1.

Example—majority. Consider the following (zero-sum) game structure Gmaj, depicted in Fig. 1. In this game there are at 
most three turns, and the winner is the player which plays at least twice. Formally, S = ({0, 1, 2} × {0, 1, 2}) \ {(2, 2)}, and 
an element in S is simply the number of times that each player played; s0 = (0, 0); T = {(s1, s2) ∈ S : s1 = 2 ∨ s2 = 2}; 
g(si, s−i) = {(si + 1, s−i), (si, s−i + 1)} for all s ∈ S \ T ; and ui(t) = 1 if ti = 2 and 0 otherwise.

3 Chess for example is not an impartial game since different moves are available to black and white. Partial zero-sum games are discussed in Section 8.1, 
however for acyclic zero-sum games partiality does not matter (Develin and Payne, 2010).
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Note that if Gmaj is played with alternating turns and without budgets or bidding, the white player can always win. 
Consider 

〈
Gmaj, ε

〉
with ε = 1

800 , and B1 = B2 = 0.5, i.e. where each player has an initial budget of 0.5.
The following is a possible game play:

• In turn 1, white bids 0.2 and black bids 0.15. White gains the turn, plays the round, and the new budgets are 0.3 and 
0.7. s = (1, 0).

• In turn 2, white bids 0.14 and black bids 0.26. Black plays and pays 0.26. s = (1, 1), and budgets are updated to 
(0.56, 0.44).

• In the last turn, both players exhaust their budgets, so the player with higher remaining budget (white with 0.56 vs. 
black with only 0.44) plays and wins the game. s = (2, 1) ∈ T .

Note that a higher budget makes it easier to win in this game. For example, if Bi > 3(B−i + ε) for some player, then 
player i can always gain the first two rounds by bidding more than the other player’s budget.

Strategies. We next define the allowed strategies for players in bidding games, and the main solution concept we apply.

Definition 5. A strategy profile in a bidding game 〈G, ε〉 is a mapping

γ : S × B → N × (B)2 × B × S2 × T ,

where B = Bε and γ (s, B1) specifies the actions taken in state s under budget partition (B1, B2) (recall that B1 + B2 = 1 so 
the partition is determined by a single parameter).

More specifically, for all s ∈ S, B1 ∈ B, γ (s, B1) = (i∗, b1, b2, B∗
i∗ , s

∗
1, s

∗
2, t), where: i∗ is the winner; b1 and b2 are the bids 

of both players; B∗
i∗ is the remaining budget of the winner; s∗

i is the next state chosen by each i; and t ∈ T (also denoted 
by γ (·)T ) is the outcome. While some of these elements can be inferred from others, the ability to reference them directly 
will become useful later on.

Definition 6. γ is a valid strategy profile if for all s ∈ S \ T and B1 ∈ B, γ (s, B1) = (i∗, b1, b2, B∗
i∗ , s

∗
1, s

∗
2, t) holds the following 

consistency constraints:

• b1 ≤ B1 and b2 ≤ B2.
• i∗ = 1 if b1 ≥ b2 and otherwise i∗ = 2. That is, highest bidder wins the round with ties broken in favor of white.
• B∗

i∗ = Bi∗ − bi∗ . That is, the winner pays her bid to the other player.
• s∗

1, s
∗
2 ∈ g(s).

• t = γ (s∗
i∗ , B

∗
i∗ )T . That is, players reach to the same terminal from state s and from the next state s∗

i∗ .

For a terminal t ∈ T we define γ (t, B1) = (1, 0, 0, B1, t, t, t) in every valid strategy.

We denote by �(G, ε) the set of all valid profiles in the bidding game 〈G, ε〉.

2.2. Subgame perfect equilibria

Definition 7. A strategy profile γ is a pure subgame perfect equilibrium (PSPE) in a bidding game 〈G, ε〉, if it is a valid strategy 
profile, and each player plays a best-response strategy to the other player at any subtree, for any budget.

We denote by �∗(G, ε) ⊆ �(G, ε) the set of all PSPEs in bidding game 〈G, ε〉.
Since there are many possible responses of a player in a given strategy profile, we use the following lemma to specify 

all of them explicitly. The proof is immediate, by noticing that the lemma covers all possible selections of bids and states.

Lemma 1. A valid strategy profile γ is a PSPE in the bidding game 〈G, ε〉 if and only if the following incentive constraints hold for all 
s ∈ S \ T and B1 ∈ B (where player i∗ is the winner in γ (s, B1)):

• For any s′
i∗ ∈ g(s) and any b′

i∗ ∈ B s.t. b′
i∗ ≤ Bi∗ , b′

i∗ > b−i∗ (weak inequality when i∗ = 1), it holds that ui∗(t) ≥ ui∗ (γ (s′
i∗ , Bi∗ −

b′
i∗ )T ). That is, the winner i∗ cannot gain by still winning the turn and use a different bid and/or action.

• For any s′
−i∗ ∈ g(s) and any b′

−i∗ ∈ B s.t. b′
−i∗ ≤ B−i∗ , b′

−i∗ > bi∗ (weak inequality when i∗ = 2), it holds that u−i∗(t) ≥
u−i∗(γ (s′

−i∗ , Bi∗ + b′
−i∗ )T ). That is, the loser −i∗ cannot gain by increasing his bid and win the turn.

• ui∗ (t) ≥ ui∗ (γ (s∗
−i∗ , Bi∗ + b−i∗ )T ). That is, the winner i∗ cannot gain by lowering her bid and losing the turn (does not apply if 

i∗ = 1 and b2 = 0). Note that the next state selected by the loser (s∗
−i∗ ) must be part of the description of the strategy.
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We emphasize that a strategy profile determines the actions and outcome for any budget partition in any internal node, 
and in particular for any initial budget partition. For each s ∈ S \ T denote μs(B1) = γ (s, B1)T . Therefore, every profile γ
for 〈G, ε〉 induces a mapping μγ from Bε to outcomes T (G). That is, μγ (B1) = γ (s0, B1)T . We say that the profiles γ , γ ′
are outcome-equivalent in 〈G, ε〉 if γ (s, B1)T = γ ′(s, B1)T for all s ∈ S, B1 ∈ Bε .

3. Existence and structure of equilibria

We start by showing the following basic result. For s ∈ S \ T , denote by γ |s the profile γ on the subtree rooted in s. 
Clearly if γ is a PSPE then so is γ |s .

Theorem 2. Any bidding game 〈G, ε〉 has a PSPE, i.e. �∗(G, ε) 	= ∅.
Further, if for all s j ∈ g(s0) there is a PSPE γ ( j) in 

〈
G|s j , ε

〉
, then there is a PSPE γ ′ in 〈G, ε〉 s.t. for all s j ∈ g(s0), γ ′|s j = γ ( j) .

Intuitively, we construct such an equilibrium by traversing the game tree bottom-up, where in each node the players 
simulate an ascending auction (for every possible budget) to determine the equilibrium bids. We emphasize that in the 
actual bidding game bids are simultaneous, but we use an ascending auction in order to determine the equilibrium bids.

3.1. Existence of PSPE

Let a first-price game be a two-player one-shot game of the following form: each player submits a bid bi ∈ B, and the 
utilities of both players (denoted u1 and u2) are an arbitrary function of the higher bid.

Given a bid profile (b1, b2), a better-reply of player i is a bid b′
i that results in a strictly better outcome, i.e., such that 

ui(max{b′
i, b−i}) > ui(max{bi, b−i}).

Lemma 3. Consider any sequence of alternating better-replies in a first-price game. Then after the first time a bidder raises her bid, no 
bidder ever lowers her bid.

Proof. Recall that tie-breaking is in favor of bidder 1. Suppose that at some step bidder 1 increases her bid from (b1, b2)

to b′
1. Note that b′

1 ≥ b2, as otherwise b1 < b′
1 < b2 and (b1, b2); (b′

1, b2) lead to the same outcome (if the first increase is 
by bidder 2 then b′

2 > b1). Any further step of bidder 1 must keep b′
1 ≥ b2, otherwise we just go back to the outcome of 

(b1, b2) (which is weakly worse for bidder 1).
Consider the next reply by bidder 2—he must also increase his bid to some b′

2 > b′
1 ≥ b2 in order to have any effect. 

Then bidder 1 must increase again and so on. Thus no bidder ever reduces her bid (after the first increase). �
Let 〈G, ε〉 be a bidding game, (s, B1) be some state and budget, and γ = (γ j)s j∈g(s) be some action profile in all the 

subgames G|s j . We observe that 〈G, ε〉 , (s, B1) and γ together induce a first-price game played in state (s, B1):

– In each s j consider the mapping μ j : B → T (G);
– For every B∗

i ∈ Bε , let s∗
i (B∗

i ) ∈ argmaxs j∈g(s) ui(μ j(B∗
i )), i.e., the best selected state for i under remaining budget B∗

i ;
– For every b1 ≥ b2, the outcome is t∗ = μs∗1(B1−b1)(B1 − b1) ∈ T (G), and thus utilities u1(t∗), u2(t∗) are only determined 

by the higher bid b1. Similarly when b2 > b1.

We denote this first-price game by G(ε, s, B1, γ ).

Proof of Theorem 2. Let k = height(G). We prove by induction on the height of the tree. The base case is trivial since in a 
tree of height 0, S \ T is empty.

We first set the next states players select in s. Let g(s) = {s1, . . . , sq}. By the induction hypothesis, for each subgame G|s j

there is some PSPE γ ( j) . This defines a first-price game G(ε, s, B1, γ ) played in state (s, B1), where γ = (γ ( j))s j∈g(s) .
Suppose we initialize both bids to 0. By Lemma 3, bids can only increase. Thus there is only a finite number of bid 

increments, from any initial state.4 We then set the bids in γ ′(s, B1) to be the equilibrium bids of the first-price game, and 
action s∗

i = argmaxs j∈g(s) ui(μs j (Bi − bi)) for i ∈ {1, 2}. We complete the definition of γ ′ by setting γ ′|s j = γ (s j) . �
3.2. Genericity and uniqueness

Generic games are games where agents have strict preferences over all outcomes. In classical extensive-form games 
(without bidding), it is known that genericity entails the existence of a unique PSPE. However in our game there are 
simultaneous steps, and thus genericity may not be sufficient for uniqueness.

Our next example shows that in the general case, there might be multiple PSPEs that are not outcome-equivalent.

4 This uses the fact that there is only a finite number of possible bids. In the continuous case there are some caveats, see Section 5.
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Fig. 2. The game Gtwo. Note that utilities are generic.

Proposition 4. There is a generic bidding game with PSPEs that lead to different outcomes under the same budget.

Proof. Consider the game Gtwo in Fig. 2, with some high budget resolution.
We first describe a single equilibrium γ |x in the subtree of node x. Any player with budget more than 0.5 (or ≥ 0.5 for 

white) after bidding at x clearly goes to y and gets 9, while the other player gets 1. The player i with the higher budget 
at x bids the difference bi = Bi(x) − 0.5 if i = 1 and bi = Bi(x) − 0.5 − ε if i = 2, and selects y. The other player −i bids 
min{B−i, bi} if i = 2 and min{B−i, bi + ε} if i = 1, and selects (5, 5). Thus if the budget is B1(x) ∈ [0.25, 0.75 − ε], the 
outcome is (5, 5); if B1(x) < 0.25 the outcome is (1, 9); and if B1(x) ≥ 0.75 the outcome is (9, 1). Note that this is a PSPE 
at x: if y is selected then the loser at x cannot raise, and if (5, 5) is selected and the loser raises the bid to win, they will 
get to y with not enough budget to win again.

Next, we set the initial budget at s0 to (0.5, 0.5), and describe two distinct equilibrium bids at s0.
In the first PSPE γ ∗ , the bids at s0 are b1 = b2 = 0, and both players select x. White wins and remains with budget 0.5. 

According to γ |x , the game ends at terminal (5, 5) (marked with ∗). This is clearly a PSPE.

In the second PSPE γ ∗∗ , the bids at s0 are b1 = b2 = 0.5, and both players select (2, 2) (marked with ∗∗). This is an 
equilibrium, since white remains with budget 0 after winning at s0, and selecting x means a utility of 1 < 2 for her. Black 
selects (2, 2) for the same reason, and cannot deviate by changing his bid. Finally, if white lowers her bid the outcome does 
not change. �
Enforcing generic preferences. In the general case, it is possible that a player is indifferent between two outcomes t, t′ ∈ T . 
In such cases, we will assume throughout the paper that the player has a strict preference towards the outcome that is also 
better for the other player.5 Thus every player has a strict preference order over all distinct outcomes. Recall that t �i t′
means that player i strictly prefers t over t′ . In the remainder of the paper, t �i t′ if either ui(t) > ui(t′), or ui(t) = ui(t′) and 
u−i(t) > u−i(t′). We highlight that this assumption only increases the number of potential deviations from a given state, 
and thus cannot add new equilibria.

3.3. The PSPE semilattice

In general, �(G, ε) may contain multiple PSPEs. However, PSPEs can be partially ordered according to the bids of the 
players. We define a partial order over all valid profiles. Intuitively, profiles with lower winning bids will be lower in this 
order, however since each profile consists of many bids at different states, we need to construct the partial order carefully. 
In particular, profiles with smaller gaps between bids will be lower, and the order is first decided over nodes closer the 
bottom. Only if both profiles are equivalent in all nodes at some level or deeper, we check the bids at a higher level for a 
difference.

Given strategy profile γ and state s ∈ S , the function γs maps any budget B1 ∈ B to bids b1 and b2, where γs(B1) =
(γ (s, B1)b1 , γ (s, B1)b2 ) (do not confuse with γ |s , which is the restriction of γ on the subtree rooted in s).

Definition 8. The partial order π over �(G, ε) is defined as follows.

– For a given budget level B1, γ ′(s, B1) >π γ (s, B1) if either:
1. the winning bid in γ ′ is higher, i.e. max{b′

1, b
′
2} > max{b1, b2};

2. the winning bids are equal, and the losing bid in γ ′ is lower;
3. b′

1 = b2 > b1 = b′
2 (i.e. bids are the same), but white wins in γ ′(s, B1).

Thus for every (s, B1), π is a linear order over profiles, and in particular over PSPEs.
– For s ∈ S \ T , we define γ ′

s >π γs if γ ′(s, B1) ≥π γ (s, B1) for all B1 ∈ B, with at least one strict inequality. Thus for each 
node s, π is only a partial order over profiles (see Fig. 3 for an example).

– For s ∈ S , we define the partial order σ(s) recursively (see Fig. 4 for an example):
– γ ′ =σ(t) γ for all t ∈ T ;
– γ ′ >σ(s) γ if both:

1. γ ′ ≥σ(s′) γ for all s′ ∈ g(s), and
2. either γ ′ >σ(s′) γ for some s′ ∈ g(s), or γ ′

s >π γs .
– Finally, γ ′ >π γ if γ ′ >σ(s0) γ .

5 To see why this assumption is necessary, note that without it even the most simple game with a single decision node and two terminals may result in 
a Pareto-dominated outcome if the player with a higher budget is indifferent between the two terminals.
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Fig. 3. The table shows the bids under four different profiles at state s, for various budget levels. Suppose that the bids for all B1 /∈ {ε, 2ε} are the same 
under all profiles. From the table we can infer the following linear orders over profiles at given budget levels: γ 2(s, ε) <π γ 1(s, ε) =π γ 4(s, ε) <π γ 3(s, ε); 
and γ 1(s, 2ε) <π γ 2(s, 2ε) <π γ 3(s, 2ε) <π γ 4(s, 2ε). Next, we can infer a partial order over profiles at state s: γ 1

s , γ 2
s <π γ 3

s , γ 4
s . However the relation 

e.g. between γ 1
s and γ 2

s is not defined.

Fig. 4. The figure shows a part of three different profiles of the same game. The bids in nodes x and y under particular budgets are shown for each profile. 
For either x, y we assume that the bids are the same across all profiles for any other budget. We also assume that in all nodes that are not shown the 
bids are the same across all three profiles under any budget. For the other nodes {x1, xy, s0} we do not assume anything about the bids, and they may 
differ between profiles. In each of s ∈ {x, y} we get a different order π over the three profiles: γ ′

x >π γx =π γ ′′
x and γ ′′

y >π γ ′
y >π γy . The shading shows 

the order σ(s), where for any s, darker color means the respective equilibrium is higher in the order (unless comparing two nodes with double lines). 
For example: γ ′ >σ(x1) γ =σ (x1) γ ′′ . To see why, note that by our construction γ ′ ≥σ (s) γ in all s ∈ g(x1), and the relation is strict for at least one child 
(x). Thus we can ignore the bids in x1 and still determine the relation σ(x1). Another example is γ ′′ >σ(xy) γ . Observe however that γ ′, γ ′′ cannot be 
compared according to σ(xy) and σ(s0) (nodes with double line). For xy this is because there are conflicting relations in the children of xy, and for s0 this 
is since the relation in at least one child (xy) is undefined. We thus get that γ ′ >π γ and γ ′′ >π γ , whereas γ ′, γ ′′ are incomparable.

Any partial order on �(G, ε) is in particular a partial order on �∗(G, ε). Note that π ignores the part of the strategy 
profile that specifies the selection of the next state. We remark that once bids are set, due to the genericity assumption 
there is only one way to specify state selection in equilibrium. Thus this would not pose a problem when comparing two 
PSPEs from �∗(G, ε).

Theorem 5. (�∗(G, ε), π) is a meet-semilattice.

Proof. Given two PSPEs γ , γ ′ for the same game 〈G, ε〉, we define their meet γ̂ as the highest PSPE γ̂ such that γ̂ ≤π γ
and γ̂ ≤π γ ′ . The meet γ̂ = γ ∧ γ ′ is unique, and is computed by Algorithm 1. Intuitively, the algorithm traverses both 
PSPEs from the bottom up, and takes the “lower” bids from each pair γ (s, B1), γ ′(s, B1) according to the order π .

Let γ̂ = γ̂ (γ , γ ′) be the output of Algorithm 1 on input γ , γ ′ . To prove the theorem, we need to show that:

– the meet operation is well defined (i.e., that Algorithm 1 never fails);
– γ̂ is a PSPE;
– γ̂ = γ ∧ γ ′;

The algorithm never fails since by induction by the time we reach node s, we already have that all of γ̂ |s′ for s′ ∈ g(s) are 
PSPEs.

To see why γ̂ is a PSPE, we assume by induction that this holds for all nodes below s, and go over all cases of the 
construction in Algorithm 1. In Cases 1 and 3, γ̂ |s = γ |s (or γ ′|s) and is thus a PSPE. In Case 2, for every B1 ∈ B both γs(B1)

and γ ′
s (B1) are equilibrium bids, so it does not matter which one we select (note that for all s′ ∈ g(s), γ̂s′ = γs′ = γ ′

s′ ). 
Since γ̂s(B1) are equilibrium bids for all B1 ∈ B, γ̂ |s is a PSPE. In Case 4 (when γ , γ ′ are incomparable by their children), 
by Proposition 2 it is possible to complete the bids for any budget level B1 such that γ̂ (s, B1) is a PSPE. As for every 
state (s, B1) the relation π is a linear order over all profiles, γ̂ (s, B1) is uniquely defined. In fact, it is composed of the 
highest winning bid bi∗ ≤ Bi∗ and the lowest losing bid b−i∗ such that (bi∗ , b−i∗) is an equilibrium of the first-price game 
G(ε, s, B1, γ ).

To show that γ̂ = γ ∧ γ ′ we need to show that γ̂ is the “largest” PSPE that is still weakly smaller than both γ , γ ′ . That 
is, (i) γ̂ ≤π γ , γ ′; and (ii) for any γ̂̂ ≤π γ , γ ′ , it also holds that γ̂̂ ≤π γ̂ .
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Algorithm 1 Compute-meet(γ , γ ′).
Initialize all nodes as ‘untouched’;
for every node s in post-order do

if all of g(s) are untouched, and γs = γ ′
s // Case 1

then
set γ̂s = γs ;

if all of g(s) are untouched, and γs 	= γ ′
s // Case 2

then
for all B1 ∈ B do

set γ̂ (s, B1) = minπ {γ (s, B1), γ ′(s, B1)};

change s to ‘touched’;

else
// some s j ∈ g(s) are touched
Let γ = (γ̂ |s j )s j∈g(s);

if γ̂ |s j = γ |s j for all s j ∈ g(s) // Case 3.1

then
γ̂s = γs ;

else if γ̂ |s j = γ ′|s j for all s j ∈ g(s) // Case 3.2

then
γ̂s = γ ′

s ;
else if all of γ̂ |s j are PSPEs // Case 4

then
for all B1 ∈ B do

set γ̂ (s, B1) to the maximal equilibrium of the first-price game G(ε, s, B1, γ ) according to π ;

else
FAIL

change s to ‘touched’;

We prove (i) and (ii) together. Suppose that γ̂̂ ≤π γ , γ ′ , then in particular γ̂̂ ≤σ(s) γ , γ ′ at all s ∈ S . Assume by induction 
that γ̂̂ ≤σ(s j) γ̂ ≤σ(s j) γ , γ ′ for all s j ∈ g(s) (this vacuously holds at the leafs).

Thus, condition 1 in Definition 8 holds, and it remains to show that one of the two alternatives for condition 2 also 
holds, i.e., either the inequality in some children is strict, or there is (weak) inequality in s as well.

Specifically, if some of the inequalities γ̂ ≤σ(s j) γ are strict (the first alternative), then γ̂ <σ(s) γ (and same for γ ′) and 
we are done with (i). Similarly, if some of the inequalities γ̂̂ ≤σ(s j) γ̂ are strict, then γ̂̂ <σ(s) γ̂ and we are done with (ii).

To complete (i), note that if γ̂s is constructed in Cases 1 or 2, then γ̂s ≤π γs, γ ′
s and the second alternative of condition 2 

holds. If Case 3.1 holds then γ̂ |s j , γ ′|s j must differ at some s j ∈ g(s), which means the first alternative holds for γ ′ and the 
second alternative (with equality) holds for γ (in Case 3.2 we get the opposite). If Case 4 holds, then γ̂ differs from both 
γ , γ ′ in at least one child s j (may be in different children). In either case we get that γ̂ ≤σ(s) γ , γ ′ . When applied to the 
root s0 we get γ̂ ≤π γ , γ ′ .

To complete (ii), note that when there are no strict inequalities in the children of s, both of γ̂s and γ̂̂ s are equilibrium 
bids in the same first-price game G(ε, s, B1, γ ). We show that γ̂̂ s ≤π γ̂s in each of the four cases by which γ̂s was con-
structed. In Cases 1 and 3 this is holds since γ̂s equals one of γs, γ ′

s , and γ̂̂ s ≤π γs, γ ′
s . In Cases 2 and 4, by construction for 

all B1, and since π is a linear order over all bidding profiles in (s, B1), we have γ̂̂ (s, B1) ≤π γ̂ (s, B1), and thus γ̂̂ s ≤π γ̂s as 
well. This means that the second alternative for condition 2 holds (with weak inequality), and thus γ̂̂ ≤σ(s) γ̂ . In particular 
γ̂̂ ≤π γ̂ as required. �

We demonstrate the computation of the meet through an example. Suppose that we compute the meet of γ 3, γ 4 from 
Fig. 3 at node s. Assuming that all nodes below s are untouched, we are in Case 2. Then at each budget level we take the 
pair of bids that is lower, getting γ̂ (s, ε) = γ 4(s, ε) = (0, 4ε), γ̂ (s, 2ε) = γ 3(s, 2ε) = (0, 5ε).

Next, suppose that the three profiles in Fig. 4 are PSPEs, and consider the meet γ̂ = γ ′ ∧γ ′′ . We have that γ̂ |x = γ ′′|x due 
to Case 2. Similarly, γ̂ |y = γ ′|y . We then complete γ̂ in the other nodes x1, xy, s0 as specified. Note that as γ ′, γ ′′ >π γ , 
their meet γ̂ ≥π γ as well (in this example it holds with a strict relation).

Since �(G, ε) is finite, �∗(G, ε) is also finite and thus by Theorem 5, π has a unique minimum, which we refer to as the 
Bottom Equilibrium. We denote the Bottom Equilibrium of the bidding game 〈G, ε〉 by B E(G, ε).

4. Efficiency, monotonicity, and binary trees

Having established the existence of PSPEs, and in particular the Bottom Equilibrium, we next turn to study the properties 
of this outcome, how it depends on the budget, and whether it is desired from the perspective of the players. This is the 
primary section of this work, where we lay out our main positive result.

Definition 9. A profile γ ∈ �(G, ε) is monotone, if μγ (B ′ ) �1 μγ (B1) whenever B ′ > B1, and likewise for player 2.
1 1
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Fig. 5. The game Gbad.

Let T P (G) ⊆ T (G) be the set of Pareto-efficient outcomes in G . That is, t ∈ T P (G) if there is no t′ ∈ T (G) s.t. t′ �1 t,
t′ �2 t .6

Definition 10. A profile γ ∈ �(G, ε) is Pareto-optimal, if μγ (B1) ∈ T P (G) for all B1 ∈ B.

Definition 11. A profile γ ∈ �(G, ε) is Pareto-surjective, if for all t ∈ T P (G), there is some budget B1 ∈ B, s.t. μγ (B1) = t .

Intuitively, our main result is that binary bidding games always have a highly desirable PSPE (the Bottom Equilibrium), 
which has all the above properties. We will first show that if the game is not binary, none of these properties is guaranteed. 
Violating Pareto-surjective is trivial: just consider a root with three children, whose utilities are (1, 3), (2, 2), and (3, 1). 
There is no equilibrium where (2, 2) is selected.

Proposition 6. There is a (non-binary) bidding game, where every PSPE violates monotonicity and Pareto-optimality.

Proof. Consider Gbad (Fig. 5) with some high resolution, and initial budget B2 = 0. Clearly white can play at will, and thus 
the only PSPE leads to the outcome (10, 7) (marked). Denote by B1(x) the budget at node x. Note that if players reach x, then 
the outcome will be (10, 7) if B1(x) ≥ 0.75 and otherwise (0, 9). Now suppose that initial budgets are B1 = 0.8, B2 = 0.2. 
If black takes the first round, he will choose (1, 8), since by choosing x we will have B1(x) ≥ B1 = 0.8 > 0.75. In order to 
get to (10, 7), white has to get to x with at least 0.75, that is to bid b1 ≤ 0.05. However if b1 < 0.2 = B2, then black will 
overbid and take the turn. Thus in every PSPE white must bid at least b1 = 0.2 in s0, and play (2, 1). This contradicts both 
monotonicity and Pareto: the utility of black dropped from 7 to 1 when his budget increased from 0 to 0.2, and (2, 1) is 
Pareto-dominated by (10, 7). �
Budget resolution. Without sufficient budget (high resolution), the bidding process may not be powerful enough to get the 
efficient outcome (see Section 4.3). However we argue that with high resolution, we can think of the budget interval as 
continuous, and this will be useful (in fact crucial) in our proofs later on. This idea can be demonstrated by looking at small 
game trees.

Consider a game tree with a single decision node s (height 1). It is clear that regardless of the budget resolution ε , it 
only matters whether B1 ≥ 0.5, since this will determine who can win the turn. Similarly, if we consider a game of height 2, 
then there are four relevant “budget intervals,” namely [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1]: in the first one the 
black player can win both turns, in the second black can choose at least one victory, and so on. We next provide a general 
definition of this property.

Recall that by our high resolution assumption, ε = 1
R·2k for some R ≥ 4. For each j < 2k , we define B j

1(k) = j
2k and

B j(k) = {B1 ∈ Bε : B j
1 ≤ B1 < B j+1

1 } = { j

2k
+ rε : r = 0,1, . . . , R − 1}.

That is, B j is the j’th budget subinterval, which is “closed” from below (includes j
2k ) and “open” from above.7 We omit the 

parameter k when clear from the context.

Definition 12. A profile γ ∈ �(G, ε) is an interval profile if for all s ∈ S \ T , all j < 2k and all B̂1 ∈ B j , μγ (s, B̂1) = μγ (s, B j
1).

When an equilibrium is not monotone, the equilibrium bids at both ends of the interval B j(k) may reach different 
intervals at the k − 1 level. Thus as we increase the resolution ε , the structure of equilibria may become more and more 
fragmented. For both practical and technical reasons we would prefer equilibria that are interval profiles. Unfortunately, in 
the general case the Bottom Equilibrium may not be an interval profile due to lack of monotonicity. However for binary 
trees, we will see that the Bottom Equilibrium is both monotone and an interval profile.

6 Recall that by our assumption �1 and �2 are strict orders.
7 The budget B1 = 1 is included in the last interval B2k−1.
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Algorithm 2 Find-PSPE(G, R).

Set ε ← 1
R 2−height(G) ; // Global variable

B ← {c · ε : c ∈ {0, 1, . . . , �1/ε�}};
Initialize tables A1, A2, T ∗, I of size |S| × |B|;
In every leaf t , assign T ∗(t, B1) = t for all B1 ∈ B;
for every node s ∈ S \ T in post-order do

for every budget partition B1 ∈ B: do
b1 ← 0; b2 ← 0 ; // Initialize both bids
i∗ ← 1 ; // Initially player 1 wins
s1 ← argmaxs′∈g(s) u1(T ∗(s′, B1));
s2 ← argmaxs′∈g(s) u2(T ∗(s′, B1));
t∗ ← T ∗(s1, B1);
if s1 = s2 then

// No conflict. White wins with bid 0 and plays s1

Break;

repeat
// Try deviation by loser −i∗:
b′

−i∗ ← b−i∗ + ε;
t′ ← T ∗(s−i∗ , B−i∗ − b′

−i∗ );

if b′
−i∗ > B−i∗ or t′ �−i∗ t∗ then
Break; // Deviation impossible or not successful
else

i∗ ← −i∗; // Loser becomes winner
bi∗ ← b′

i∗ ; // Deviation becomes the new bid
t∗ ← t′;

// Write down the equilibrium strategies in γ (s, B1):
I(s, B1) ← i∗; // winner
Ai(s, B1) ← (bi , si) for i ∈ {1, 2}; // actions of players (bid+selection)
T ∗(s, B1) ← t∗; // terminal

until;

return γ ← (I, A1, A2, T ∗);

4.1. Binary bidding games

The remainder of this section is dedicated to the proof of our main theorem:

Theorem 7. Let G be a binary bidding game with high resolution ε , and let γ = B E(G, ε). Then:

(A) At any point γ (s, B1), either b1 = b2 (if white wins) or b2 = b1 + ε (if black wins);
(B) γ is an interval profile;
(C ) γ is Pareto-surjective;
(D) γ is Pareto-optimal;
(E) γ is monotone.

Recall that we denote by γ |s the projection of γ on a subgame of G that is rooted in s. Similarly, μ|s = μγ |s . We will 
sometimes use the budget of player 2 as the input for μ, rather than the budget of player 1. This should be clear from the 
notation. That is, μ(B1) and μ(B2) always refer to the same outcome in T (G).

Denote the two children of s0 by sl, sr . As the proof of all parts is by induction on the height of G , we assume that γ =
B E(G, ε) has been computed on both subtrees Gl = G|sl and Gr = G|sr , and denote γ (l) = γ |sl , γ

(r) = γ |sr and similarly for 
μl, μr . By construction, we have that γ (l) = B E(Gl, ε), γ (r) = B E(Gr, ε). Thus by the induction hypothesis both of γ (l), γ (r)

have all properties (A)–(E).

Proof of Theorem 7(A) (near-tie). By induction in each subtree we have that γ (l), γ (r) are monotone. Suppose (b1, b2)

are the Bottom Equilibrium bids at some state γs(B1), and assume towards a contradiction that b1 > b2. Consider the bid 
profile γ ′

s (B1) = (b1, b2 + ε). Either (b1, b2 + ε) are equilibrium bids, or there is a deviation. However the only deviation 
that is not also available in (b1, b2) is by the white player. W.l.o.g. white can deviate by bidding b′

1 = (b2 + ε) − ε = b2, 
since as long as she drops below b2 + ε the outcome is the same (this is a first-price game). Now either (b′

1, b2 + ε) are 
equilibrium bids, or black has a deviation. By monotonicity of γ (l) and γ (r) , black cannot gain by bidding b′

2 > b2 + ε , since 
μl(B2 − b′

2) �2 μl(B2 − (b2 + ε)) and likewise for μr . Thus the only deviation is to decrease his bid and drop the round, 
w.l.o.g. to b′

2 = b′
1. Again either (b′

1, b
′
2) is an equilibrium, or white drops to b′′

1 = b′
2 − ε and so on until no player has 

a deviation at some (b∗
1, b

∗
2). Thus we get a PSPE γ ∗ where γ ∗

s (B1) = (b∗
1, b

∗
2). If there were at least two deviations, then 

b∗
i∗ < b1. If there are no deviations, then b∗

i∗ = b1 and b∗
−i∗ > b2. If there is exactly one deviation then b∗

i∗ = b∗
2 = b1 and 

b∗ = b2. In either case, we get that (b∗, b∗) <π (b1, b2), and thus γ ∗ <π γ , which is a contradiction to γ being the Bottom 
1 1 2
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Equilibrium. The proof for b2 > b1 + ε is the same except that there are only two cases for (b∗
1, b∗

2) (no deviations, or at 
least one). �
Lemma 8. Algorithm 2 computes γ .

Proof. Recall that k = height(G). Note that the algorithm effectively goes over all states s ∈ S \ T from the bottom up, and 
for any possible budget allocation, runs an auction where players iteratively modify their bids by the smallest possible 
increment ε , until none of them can gain by further modifying her bid. Note that the players never change their selected 
state when increasing their bid. Indeed, if player 2 has an incentive to raise at the initial bids of (0, 0) (and select child s2) 
only if he strictly prefers t′ = μ2(B2 − ε) over t∗ = μ1(B2), and μ1(B2) �2 μ1(B2 − ε) by monotonicity of γ (2) . Similarly, 
now player 1 has an incentive to raise only if she prefers t′ = μ1(B1 − ε) over t∗ = μ2(B2 − ε), which means that t′ �1
μ2(B2 − ε) = μ2(B1 + ε) �1 μ2(B1 − ε) by monotonicity of γ (1) . This continues with every raise of bid, so player 1 always 
prefers s1 and player 2 always prefers s2.

By property (A), the winning and losing bids in γ are nearly tied or tied. The algorithm goes over all such pairs of bids 
in increasing order and thus must reach (b1, b2) as in γ (s, B1) unless it stops at some lower bids. Suppose there are lower 
bids γ ′

s (B1) = (b′
1, b

′
2) where the loser −i∗ cannot deviate by ε and the algorithm stops. Then by monotonicity of γ (1), γ (2) , 

neither i∗ nor −i∗ can deviate by further increasing their bid. Further, by Lemma 3, bids can only increase so there is no 
deviation by decreasing a bid either, meaning that γ ′ is also a PSPE which is lower than γ . A contradiction. �
Proof of Theorem 7(B) (Intervals). Let s be a node at height k and j < 2k . Consider γs(B j

1) = (b1, b2) and B̂1 ∈ B j(k). Note 
that the size of each level k interval is R , and the size of level k − 1 intervals is 2R . Thus B̂1 = B j

1 + rε for some r < R . 
Suppose first that b1 ≥ b2, i.e. that white wins. By property (A), b1 = b2. Let j′, j′′ < 2k−1 be the level k − 1 budget intervals 
reached when white wins and if white drops, respectively. Formally, B j

1 −b1 ∈ B j′(k − 1) and B j
1 +b1 = B j

1 +b2 ∈ B j′′(k − 1). 
We argue that there are 3 cases:

Case 0 b1 = b2 = 0 (no conflict). Both agents prefer the same node s′ ∈ g(s) at the current budget B1. So all of interval 
B j′(k − 1) is (weakly) preferred to all of interval B j′′ (k − 1).

For any B̂1 ∈ B j(k) with b̂1 = b̂2 = 0 this still holds, as B j(k) is contained in both B j′ (k − 1) and B j′′ (k − 1)

(which are actually the same interval but in different nodes). Thus γ (s, B̂1) = (0, 0) as well.

Case 1L B j
1 + b1 is the maximal point in B j′′ (k − 1), i.e. B j

1 + b1 = B j′′+1
1 − ε = B j′′

1 + (2R − 1)ε . This means that B1 − b1 =
B j′

1 + ε . By the progress of Algorithm 2 we can conclude due to Lemma 8 that white prefers outcome j′ (and 
winning the turn) over outcome j′′ (and losing the turn), otherwise she would not have made the last increase 
from to b1. Similarly, black prefers j′′ over j′ , but prefers j′ over j′′ + 1, as otherwise he would deviate to b2 + ε .

Let B̂1 = B j
1 + rε (where r < R). Denote b̂1 = b1 − rε, ̂b2 = b̂1 = b2 − rε . Equilibrium bids are presented graphi-

cally in Fig. 6. We argue that
– B̂1 + b̂2 ∈ B j′′(k − 1);
– B̂1 − b̂1 ∈ B j′(k − 1); and
– γs(B̂1) = (b̂1, ̂b2)

The first claim is obvious, since B̂1 + b̂2 = B j
1 + b2 ∈ B j′′(k − 1). To see why the second claim holds, note that since 

r < R ,

B̂1 − b̂1 = B j
1 + rε − (b1 − rε) = B j

1 − b1 + 2rε < B j
1 − b1 + (2R − 1)ε,

which is still in interval B j′ (k − 1).
For the third claim, suppose the equilibrium bids are lower than b̂1. If white wins then the outcome is either 

in interval j′ , or in a higher interval which is even worse for black. This means black would have a deviation to 
b̂2. Similarly, if black wins with b′

2 ≤ b̂2 then the outcome is wither in interval j′′ or in a lower interval which is 
worse for white, and thus white would have a deviation to b̂1. By Lemma 8, it is left to show that Algorithm 2
stops at (b̂1, ̂b2). Indeed, the next deviation by black would reach interval j′′ + 1, and we know black prefers the 
current outcome j′ . Intuitively what we showed is that B j

1 + b2 = B j′′
1 + (2R − 1)ε is the “critical point” where the 

auction stops, as long as B1 ∈ B j(k) (see rightmost dotted line in Fig. 6).
Case 1W B j

1 + b1 is not the maximal point in its interval B j′′(k − 1). Then we argue that B j
1 − b1 is the highest point 

of B j′ (k − 1), i.e. B j
1(k) − b1 = B j′

1 (k − 1) + (2R − 1)ε . This is since both agents prefer interval j′ (where white 
wins) over j′′ (where black wins), as otherwise black would raise by ε . Then since b1 = b2, we get that B j

1 + b2 =
B j′′

(k − 1) + ε , i.e. that the losing bid reaches the second-lowest point on its interval.
1
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Fig. 6. The middle row shows intervals j′ and j′′ of level k − 1 (each of size 2R · ε). The top row shows an interval j of level k (of size R · ε) and the 
equilibrium bids in Case 1L at (s, B j

1). The bottom row shows the equilibrium bids at B̂1 = B j
1 + rε . Note that b1 = b2 and b̂1 = b̂2.

Fig. 7. Equilibrium bids at (s, B j
1) and (s, B̂1) in Case 1W.

Now, we continue in a similar way to Case 1L, except that here critical point is B j
1 −b1 = B j′

1 (k −1) + (2R −1)ε , 
i.e. determined by the winner i = 1 (leftmost dotted line in Fig. 7). Thus define b̂1 = b̂2 = b1 + rε , and we will 
show that
– B̂1 − b̂1 ∈ B j′(k − 1);
– B̂1 + b̂2 ∈ B j′′(k − 1); and
– γs(B̂1) = (b̂1, ̂b2)

The first claim follows since B̂1 − b̂1 = B j
1 − b1 ∈ B j′(k − 1), and the second since

B̂1 + b̂2 = B j
1(k) + rε + (b1 + rε) = B j

1(k) + b1 + 2rε = B j′′
1 (k − 1) + ε + 2rε ≤ B j′′

1 (k − 1) + (2R − 1)ε.

As in Case 1L, the algorithm would not stop at lower bids than b̂1. Any increase by black would reach interval j′′
or higher (worse for black), but we know black prefers j′ over j′′ so would not deviate.

In either case, we get by the induction hypothesis that

μγ (s, B̂1) = μγ (si, B̂1 − b̂1) = μγ (si, B j
1 − b1) = μγ (s, B j

1).

If b2 > b1, then Case 0 is impossible, and we get two cases similar to the above analysis (see Fig. 8): Case 2L where the 
critical point is B j

1 −b1 = B j′
1 (k −1) and B j

1 +b2 = B j′′
1 (k −1) +ε; and case 2W where the critical point is B j

1 +b2 = B j′′
1 (k −1), 

and B j
1 − b1 = B j′

1 (k − 1) + ε . In either case we get that there is some critical player î , for which B̂ î − b̂î = B j

î
− bî , and that 

B̂−î − b̂−î, B
j

−î
−b−î reach the same level k − 1 budget interval (details omitted but very similar to cases 1L,1W). Then again, 

by the induction hypothesis

μγ (s, B̂1) = μγ (si, B̂2 − b̂2) = μγ (si, B j
2 − b2) = μγ (s, B j

1). �
Note that in particular we proved the following corollary (phrased as a lemma since will be used later):
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Fig. 8. Equilibrium bids at (s, B j
1) in Case 2L and 2W. Note that in both cases b2 = b1 + ε . The critical point in each case is marked with a double dotted 

line.

Lemma 9. For any s ∈ S \ T and j < 2k, one of the following five cases applies for the Bottom Equilibrium γs(B j
1) = (b1, b2). 

Case Winner Critical Bid of player 1 Bid of player 2

0 i∗ = 1 – 0 0

1L i∗ = 1 î = 2 B j
1(k) − b1 = B j′

1 (k − 1) + ε B j
1(k) + b2 = B j′′

1 + (2R − 1)ε

1W i∗ = 1 î = 1 B j
1(k) − b1 = B j′

1 (k − 1) + (2R − 1)ε B j
1(k) + b2 = B j′′

1 + ε

2L i∗ = 2 î = 1 B j
1(k) − b1 = B j′

1 (k − 1) B j
1(k) + b2 = B j′′

1 (k − 1) + ε

2W i∗ = 2 î = 2 B j
1(k) − b1 = B j′

1 (k − 1) + ε B j
1(k) + b2 = B j′′

1 (k − 1)

Proof of Theorem 7(C ) (Pareto-surjective). We prove by induction on the height of the tree G . For height 0 it is obvious. 
For height 1 either one leaf weakly Pareto-dominates the other, in which case this leaf is reached in μ regardless of budgets, 
or each player has a favorite leaf in which case both leafs are Pareto-efficient.

Let t∗ ∈ T P (G), we need to show that there is some initial budget B ∈ B s.t. that μ(B) = t∗ . W.l.o.g. t∗ ∈ T P (Gl).
By induction on property (C ), let B∗

1 s.t. μl(B∗
1) = t∗ (must exist), and let t∗

r = μr(B∗
1). As γ is an interval profile, w.l.o.g. 

B∗
1 = B j

1(k) + 2ε for some j < 2k (i.e. it an even multiple of ε , and is not on the edge of its respective interval). This 
is possible by property (B) and since R ≥ 4. Thus by slightly increasing or decreasing the budget, the outcome will not 
change: μl(B∗

1 − 2ε) = μl(B∗
1 + ε) = t∗ [also equal to μl(B∗

2 − ε)]; and likewise for μr .
We know that t∗

r does not strictly Pareto dominate t∗ (as t∗ ∈ T P (G)), thus either t∗
r ≺1 t∗ or t∗

r ≺2 t∗ .
Case I: Both players prefer t∗ over t∗

r at budget B∗
1. We claim that the equilibrium bids are b1 = b2 = 0.

Suppose that black raises to b′ > b2 = 0, takes the round and goes right. then

μr(B∗
2 − b′) �2 μr(B∗

2) = t∗
r ≺2 t∗,

and thus black does not gain. Therefore b1 = b2 = 0, and μ(B∗
1) = μl(B∗

1) = t∗ .
Case II: Suppose that t∗

r �2 t∗, t∗
r ≺1 t∗ , i.e. that black strictly prefers child sr at budget B∗

2, whereas white strictly 
prefers sl . Let B̂2 ≤ B∗

2 be the lowest budget s.t. for every β2 ∈ [B̂2, B∗
2], μr(β2) �2 t∗ (it is possible that B̂2 = 0). Set t̂r =

μr(B̂2). By Pareto-optimality of t∗ it follows that for every β2 ∈ [B̂2, B∗
2], white prefers sl (since μr(β1) ≺1 t∗ = μl(B∗

1) �1
μl(β1)).

We set B2 = B∗
2+B̂2

2 , B1 = 1 − B2, and argue that μ(B1) = t∗ . Let b∗ = B∗
2−B̂2

2 . We will show that the equilibrium in s0 is 
b1 = b2 = b∗ . Note that B̂2 is the lower bound of a budget interval and thus also an even multiple of ε , so B2 and b∗ are 
integer multiples of ε .

As long as bids are strictly below b∗ , the resulting budget is in the “conflict zone” [B̂2, B∗
2], and the lowest bidder will 

raise to take the turn from the other bidder. Suppose now that b1 = b2 = b∗ . If B̂2 = 0, then b2 = b∗ = B2 and black cannot 
raise. Otherwise, by definition of b∗ if black raises his bid to b′

2 = b∗ + ε , then

t∗ �2 μr(B̂2 − ε) = μr(B2 − (b∗ + ε)) = μr(B2 − b′
2),

so black cannot gain by selecting sr . Thus b1 = b2 = b∗ is an equilibrium, where μ(B1) = μl(B∗
1).

Case III: t∗
r �1 t∗ , i.e. white strictly prefers sr at budget B∗

1. Quite expectantly, the proof of case III is similar to case II, 
where white and black change roles. However, there are some fine issues due to tie-breaking, so we lay out the full proof.
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Let B̂1 ≤ B∗
1 be the lowest budget s.t. for every β1 ∈ [B̂1, B∗

1], μr(β1) �1 t∗ . Set t̂r = μr(B̂1). As in case II, whenever the 

budget after the bid is in the range [B̂1, B∗
1], white prefers sr whereas black prefers sl . We define B1 = B̂1+B∗

1
2 , b∗ = B∗

1−B̂1
2 , 

and argue that the equilibrium reached in s0 is b1 = b∗, b2 = b∗ + ε .
Indeed, if b1 < b2 ≤ b∗ , then black selects sl under the remaining budget B2 − b2 ≥ B∗

2, and we have μr(B1 − b2) �1 t∗ =
μl(B∗

1) = μl(B2 − b∗) �1 μl(B2 − b2). I.e., white will raise her bid to b′
1 = b2.

Similarly, if b1 = b2 ≤ b∗ , then white selects sr , but black wants to raise to b′
2 = b2 + ε: since B2 − b′

2 ≥ B2 − b∗ − ε =
B∗

2 − ε , we have8

μl(B2 − b′
2) �2 μl(B∗

2 − ε) = μl(B∗
2) = t∗ �2 t̂r = μr(B2 + b∗) �2 μr(B2 + b1).

It remains to show that b2 = b1 + ε = b∗ + ε is an equilibrium, i.e. that white will not raise. This is exactly as in case II. 
Either white cannot raise, or b′

1 > b∗ . In the latter case, μr(B1 − b′
1) �1 μr(B1 − b∗ − ε) = μr(B̂1 − ε) �1 t∗ , where the last 

inequality is by definition of B̂1. Thus white cannot gain by selecting sr , and clearly not by keeping sl at a lower budget. �
Proof of Theorem 7(D) (Pareto-optimal). Let b1, b2 be equilibrium bids in s0 reached by the above process. We use through-
out the proof the fact that by monotonicity of both subgames, it only makes sense for a player to raise her bid if she selects 
the branch that is not currently played. Note that we may not use the fact that μ itself is monotone, since this will be the 
last thing we prove.

Assume w.l.o.g. that b1 = b2 (white takes) and that under budget B1 −b1, white prefers sl . We argue that t∗
l = μl(B1 −b1)

is Pareto-efficient in G . Assume, toward a contradiction, that there is some t∗
r ∈ T P (Gr) that Pareto dominates t∗

l (i.e., 
t∗

r �1,2 t∗
l ). Since γ (r) has property (C ) by induction, t∗

r = μr(B ′
1) for some budget B ′

1.

Case 1: Suppose first that B ′
1 > B1, i.e. that white must drop the turn in order to reach sr with sufficient budget. Denote 

b′ = B ′
1 − B1 (note that b′ = B2 − B ′

2 ≤ B2). We argue that b′ > b1. If b1 = 0, then clearly b′ > 0 = b1, thus suppose b1 > 0. 
Then by construction of the equilibrium (b1, b2), t∗

l is strictly preferred by white over the outcome of (b1 − ε, b2), which is 
μr(B1 + b1) (as b2 = b1). Thus,

μr(B1 + b′) = t∗
r �1 t∗

l �1 μr(B1 + b1).

By monotonicity, we must have b′ > b1 = b2. Next, recall that t∗
r �2 t∗

l . Thus black could raise his bid to b′ > b1 = b2 and 
strictly gain. This shows that (b1, b2) are not an equilibrium in s0, in contradiction to the construction of γ .

Case 2: B ′
1 = B1 − b′ for some b′ ≥ 0. If b1 = 0, then μr(B1) �1 μr(B ′

1) = t∗
r �1 t∗

l = μl(B1). That is, white prefers sr but 
chose sl . A contradiction.

Thus suppose b1 > 0, and we will show that this will lead to a contradiction.
Since μr(B1 − b′) = t∗

r �1 t∗
l �1 μr(B1 − b1), we must have by monotonicity of μr that 0 ≤ b′ ≤ b1. By the construction 

of the equilibrium bids, white strictly preferred t∗
l = μl(B1 − b1) over the previous state μr(B1 + b2) = μr(B1 + b1) (where 

the bid of player 1 was strictly lower). Thus t∗
r �1 t∗

l �1 μr(B1 + b1) �1 μr(B1 − b′) = t∗
r , which is a contradiction. �

Proof of Theorem 7(E) (Monotonicity). By the induction hypothesis, both of μl, μr are monotone. Let B ′
1 = B1 + ε , and let 

b1, b2 be the equilibrium bids in γ (s0, B1). Likewise, b′
1, b

′
2 are the equilibrium bids in γ (s0, B ′

1), where B ′
1 = B1 + ε .

Case 1: Suppose white takes under γ (s0, B1), thus b1 = b2 by property (A). By our assumption, player 1 selects sl at 
γ (s0, B1), and the outcome is tl = μl(B1 − b1) �1 μr(B1 + b2) (in fact the inequality is strict if b1 > 0, or else player 1 
would never bid b1).

We argue that b′
2 ≤ b1 + ε . Otherwise, it means that Algorithm 2 reached bids (b1 + ε, b1 + ε) under budget B ′

1 and then 
black raised again. However, at bid b1 + ε white remains with B ′

1 − (b1 + ε) = B1 − b1 and thus we know the outcome is 
t′
l = μl(B1 − b1) �2 μr(B2 − (b1 + ε)) (since black does not raise to b1 + ε under B1). By raising under B ′

1, the outcome for 
black will be

μr(B ′
2 − (b1 + 2ε)) = μr(B2 − b1 − 3ε) �2 μr(B2 − (b1 + ε)) �2 t′

l ,

that is, black does not gain.
We conclude that b′

1, b
′
2 ≤ b1 + ε . Then, by bidding b′′

1 = b1 + ε at budget B ′
1 and selecting sl , white can guarantee a 

value of μl(B ′
1 − b′′

1) = μl((B1 + ε) − (b1 + ε)) = μl(B1 − b1). Thus its current value μ(B ′
1) is at least the same, and we get 

μ(B ′
1) �1 μl(B1 − b1) = μ(B1).

Case 2: Next, we prove for the case where black takes under γ (s0, B1) (i.e., b2 = b1 + ε). Note that in particular b2 ≥ ε . 
W.l.o.g. black selects sr , and the outcome is tr = μ(B2) = μr(B2 − b2) = μr(B1 + b2).

8 The equality is by our selection of B∗
2 so that it is not on the edge of its respective interval. This is the only place where our assumption of high 

resolution is applied. However this seemingly innocuous assumption is critical, as we show in the next section.
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By Lemma 8 and the way Algorithm 2 works, player 1 selects the same child of s0 (w.l.o.g sl) at any bid at or below the 
equilibrium bids. Thus, if b1 > 0 then for every b̂1 ≤ b1, μl(B1 − b̂1) �1 μr(B1 − b̂1). Player 2 always prefers the other child 
(sr ), unless both bid 0 in equilibrium, thus for every b̂2 < b2, μr(B2 − b̂2) �2 μl(B2 − b̂2).

We claim that b′
2 > b2 − 2ε . Assume, towards a contradiction, that b′

2 ≤ b2 − 2ε (in particular b1, b2 > 0). Suppose that 
black wins, i.e. that b′

2 = b′
1 + ε and t′ = μr(B ′

2 − b′
2). Note that b′

2 (and reaching t∗
r = μr(B2 − b′

2)) is not a winning 
equilibrium bid under B1, i.e., by bidding b∗

1 = b′
2 white remains with B1 − b∗

1 and gets a strictly better outcome μl(B1 −
b′

2) �1 t∗
r . Therefore (the second inequality is by monotonicity of μr ),

μl(B ′
1 − (b′

2 + ε)) = μl(B1 − b′
2) �1 t∗

r = μr(B2 − b′
2) �1 μr(B ′

2 − b′
2) = t′,

i.e., white has a deviation from (b′
1, b

′
2) in γ (s0, B ′

1).
Now suppose that white wins, i.e. that b′

2 = b′
1 and t′ = μl(B ′

1 − b′
1). We use the fact that (b1, b1) is not an equilibrium 

in γ (s0, B1), as black raised to b2 = b1 + ε . Note also that b′
2 < b2 − ε = b1.

μr(B ′
2 − b1) = μr((B2 − ε) − b1) = μr(B2 − (b1 + ε)) = μr(B2 − b2)

�2 μl(B2 + b1) (by the last increase of black in γ (s0, B1))

�2 μl(B2 + b′
1) �2 μl(B ′

2 + b′
1) (by monotonocity of μl)

= μl(B ′
1 − b′

1) = t′.
This means that black can strictly gain at γ (s0, B ′

1) by raising his bid from b′
2 to b1. In either case (black or white win), we 

get a contradiction to (b′
1, b

′
2) being an equilibrium, which proves the claim.

Thus b′
2 ≥ b2 − ε . We next lower-bound the utility of the new outcome t′ = μ(B ′

1) to player 1: t′ �1 μr(B ′
1 + b′

2), since 
if black wins in γ (s0, B ′

1) then the right-hand side is t′ , and if white wins then the outcome is strictly better for her, or 
otherwise she would not raise. Then,

t′ �1 μr(B ′
1 + b′

2) = μr(B1 + b′
2 + ε) �1 μr(B1 + b2) = tr,

where the second inequality is by monotonicity of μr .

Finally, the above proof only shows monotonicity for the white player. Monotonicity for the black player now follows 
immediately from property (D). Since μ(B2) = μ(B1) is (weakly) better for white than μ(B2 + ε) = μ(B1 − ε), it cannot be 
strictly better for black. Otherwise μ(B2 + ε) would be Pareto dominated by μ(B2). Thus μ(B2 + ε) �2 μ(B2). �
4.2. Why bottom equilibrium?

While there may be multiple equilibria, we argue that the Bottom Equilibrium, when exists, is the most natural one. One 
justification is that players may want to maintain as much budget as they can in each round, given that their utility in the 
rest of the game is monotone in the remaining budget. In other words, if we focus on the single bidding round, each player 
is inclined to bid the minimal amount.

A second informal justification is that in the Bottom Equilibrium each player is nearly indifferent between winning and 
losing the round: small deviations (i.e. higher or lower bid) of the other player −i cannot substantially hurt i. Further, the 
loser of the round in the Bottom Equilibrium never regrets if the other player bids too low and becomes the loser. On the 
other hand in other PSPEs the loser has a “risk” of becoming a winner with very low budget. Thus it is safer in some sense 
to play the Bottom Equilibrium.

Our third justification is that we can maintain the Bottom Equilibrium as the unique PSPE by slightly changing the rules 
of the auction.9 Indeed, suppose that instead of a sealed-bid auction in every step, we hold an ascending auction (similar to 
an English auction), where in each step the price rise by ε and the loser has a chance to accept the new price and become a 
winner. Since this is essentially equivalent to the auction being simulated in Algorithm 2, the unique outcome is the Bottom 
Equilibrium.

Corollary 10. Any binary bidding game 〈G, ε〉 with the above ascending auction rule has a unique PSPE, which is the Bottom Equilib-
rium of 〈G, ε〉.

4.3. Low budget resolution

We showed in Section 3 that a PSPE exists regardless of the budget resolution. However for our main theorem we also 
assumed “high resolution” that is at least exponential in the height of the game tree. We next show that high resolution is 
necessary for Pareto Efficiency (main part of Theorem 7) to hold.

9 We thank David Parkes for this observation.
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Fig. 9. The game Gk . Pareto-optimal terminals are marked with ∗.

Fig. 10. A game with continuous budgets, inconsistent tie-breaking, and no SPE.

Proposition 11. For any k ≥ 2 there is a binary bidding game structure Gk of height k, s.t. for any 1 < R ′ < 2k−1 , the game 
〈
Gk,

1
R ′

〉
with B1 < 0.5 has no Pareto-optimal PSPEs.

Proof. Consider the binary game Gk , described in Fig. 9. In order to reach one of the Pareto-optimal leaves (marked with ∗), 
the same player must win k − 1 times in a row after a branch is selected (as each branch is an ordinal 0-sum game). Since 
2k−1 B2 > 1, and the budget of the loser doubles with each loss, player 1 cannot win in all k − 1 times unless B2(y1) = 0. 
Similarly, since after every win of player 2, the budget of player 1 will be at least 1

R ′ > 21−k , player 2 cannot win in all k − 1
times either (even if initially B2(x1) = 1).

Therefore, if after the first turn the selected child is x1, the outcome will be (8, 1); and if the selected child is y1 then 
the outcome will be (1, 8) (again, unless B2(y1) = 0). The only way to reach B2(y1) = 0 is if black bids all of his budget 
b2 = B2 at s0 and then selects y1. However, this is not an equilibrium: since b1 ≤ B1 < b2 − 1

R ′ , black can decrease his bid 
to B1 + 1

R ′ and gain 8 instead of 7.
Note that due to our tie-breaking assumption it is impossible for agent 1 to similarly surrender her budget, since agent 2 

must bid at least 1
R ′ to win each turn. �

The example above does not cover the case of R ′ = 1 (“single coin”). In that case, consider the game G ′
k (for some k ≥ 2) 

and a root node s′ whose children are s0 and (1, 8). If player 2 starts with the coin (B2 = 1) then in the only equilibrium 
he wins the first turn and selects (1, 8), as he cannot get more than 7 by reaching s0.

5. Continuous bids

We denote by 〈G,−〉 the game G with continuous bids, where the set of allowed budget partitions is B = [0, 1] and 
B1 + B2 = 1. Note that the strategy space in such games is infinite, and thus it is not a-priori clear that these games have 
a subgame perfect equilibrium, let alone a PSPE. Indeed, we show that if the tie-breaking method can depend on the node, 
then there are games, even zero-sum games, where no equilibrium exists.

Proposition 12. There is a zero-sum bidding game with node-specific tie breaking, that has no subgame-perfect equilibrium.
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Fig. 11. Equilibrium bids at γ s(B̂1).

Proof. Consider the game depicted in Fig. 10a. This is a zero-sum game where the white player is the maximizer. By the 
tie-breaking rule, white wins in x′ if her budget is strictly above 0.5, and wins in y′ if her budget is at least 0.5. In state 
x, white needs to take at least one turn to win the game. Thus a budget of B1(x) > 0.25 is sufficient. Similarly, in state y
white has to take twice, and thus must have a budget of b1(y) ≥ 0.75 to win the game.

Clearly, if the initial budget partition in s0 is B1 ≥ 0.5 + δ for some δ > 0, then white can win by bidding b1 = 0.25 + δ/2: 
either she takes the turn and reaches x with 0.25 + δ/2, or loses the turn and reaches to y with B1 + b2 ≥ 0.5 + δ + (0.25 +
δ/2) = 0.75 + 3δ/2 > 0.75. Similarly, if B1 < 0.5 + δ then black can bid 0.25 + δ/2 and force white to lose.

Now, suppose B1 = B2 = 0.5. We first show that there is no value in pure strategies, by showing that for any bid of one 
player, the other player has a bid that leads to victory. The outcome for any pair of deterministic bids (b1, b2) is displayed 
in Fig. 10b.

Let b1 ∈ [0, B1]. If b1 < 0.25 then set b2 = b1. Thus black takes the turn and gets to y with B2(y) > 0.25, which is 
sufficient for victory. If b1 ≥ 0.25, then black can bid b2 < b1. Now white remains with B1(x) = 0.5 − b1 ≤ 0.25, which 
means black wins. Thus white cannot guarantee any value above −1.

We next consider the black player. Let b2 ∈ [0, B2]. If b2 < 0.25 then denote b2 = 0.25 − δ, and set b1 = b2 + δ/2 < 0.25. 
Then white takes and gets to x with B1(x) = 0.5 − b1 > 0.25, which is sufficient for victory. If b2 ≥ 0.25, then set b1 < b2. 
Now black remains with B2(y) = 0.5 − b2 ≤ 0.25, which means white wins. Thus black cannot guarantee any value below 1.

It is not hard to generalize the above argument to see that there is no value even in mixed strategies. Indeed, let b2 ∈
	([0, B2]) be any mixed strategy of black. There must be an open interval A = (0.25 −δ, 0.25) s.t. b2 assigns a probability of 
less than 0.01 to A. Then white can bid b1 = 0.25 − δ/2 and win w.p. of at least 0.99: by our arguments on pure strategies, 
the only bids of black that beat b1 are in the range [b1, 0.25) ⊆ A. Therefore the value of the game under equal initial 
budgets is at least 0.99(1) + 0.01(−1) = 0.98.

Similarly, let b1 ∈ 	([0, B1]) be some mixed strategy of white. Again there is some open interval A′ = (0.25 − δ, 0.25)

that is played by white w.p. less than 0.01. Then by playing b2 = 0.25 − δ/2 black can win w.p. of at least 0.99, and the 
value cannot be above −0.98. �

Consider a game structure G . With continuous bids, the Bottom Equilibrium is not well-defined, as positive equilibrium 
bids may be arbitrarily small. However, we next show that playing with continuous bids is essentially the same as playing 
with high budget resolution. Denote by B j

(k) = [B j
1(k), B j+1

1 (k)) the j’th continuous budget interval of level k.

Theorem 13. Let γ = B E(G, ε) for some binary game G and high resolution ε . There is a PSPE γ of 〈G,−〉 such that for all j < 2k

and for all B̂1 ∈ B j
(k), μ(B̂1) = μ(B j

1) = μ(B j
1) (where μ = μγ ).

In other words, there is a PSPE of 〈G,−〉 that for any budget in the interval yields exactly the same outcome we would 
get in the Bottom Equilibrium of 〈G, ε〉 for the same budget interval.

Proof. The proof is (as usual) by induction. Let (b1, b2) = γs(B j
1) be the equilibrium bids in the discrete game. We denote 

by j′ and j′′ the respective level k − 1 intervals of B j
1 − b1 and B j

1 + b2. By induction, μ(B1) = μ(B j′
1 ) = μ(B j′

1 ) for all 

B1 ∈ B j′
(k − 1) and likewise for j′′ . So that in level k − 1 it only matters in which budget interval we arrive.

For each B̂1 ∈ B j
(k) we need to define equilibrium bids b̂1 ≤ B̂1, ̂b2 ≤ B̂2 so that: (a) B̂1 − b̂1 ∈ B j′

(k − 1); (b) B̂2 − b̂2 ∈
B j′′

(k − 1); (c) b̂1 ≥ b̂2 ⇐⇒ b1 ≥ b2. This will guarantee that any deviation to a different interval at γ s(B̂1) entails a 
deviation in γs(B j

1). In addition, we have to make sure that (d) no agent has a new deviation to a different point inside the 
interval (i.e. one that was not previously available due to the discrete budgets).

Let δ = B j+1
1 − B̂1 > 0. All five cases of Lemma 9 map into only three cases.

– Case 0: b1 = b2 = 0. We set b̂1 = b̂2 = 0 as well. (a)+(b)+(c)+(d) trivially hold.

– Case 1 (both L and W): b1 = b2 > 0. Note that according to both Cases 1L and 1W of Lemma 9, B j′
1 + B j′′

1 − 2B j
1 +

2−(k−1) = 0.
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We define b̂1 = B j′′+1
1 − B̂1, and b̂2 = max{0, B̂1 − B j′+1

1 + δ} (see Fig. 11). Thus (a)+(b) hold by construction. (c) holds 
even when b̂2 > 0 since

b̂1 − b̂2 = B j′′+1
1 − B̂1 − (B̂1 − B j′+1

1 + δ)

= B j′′+1
1 − 2(B j+1

1 − δ) + B j′+1
1 − δ = B j′′+1

1 − 2B j+1
1 + B j′+1

1 + δ

= B j′′
1 + 2−(k−1) + B j′

1 + 2−(k−1) − 2B j
1 − 2 · 2−k + δ = δ > 0.

As for (d), for any b′
2 > b̂1, we have

B̂1 + b′
2 > B̂1 + b̂1 = B j′′+1

1 ,

i.e. we get a point outside the interval B j′′
, so black cannot gain by bidding higher. White cannot gain by bidding 

b′
1 ∈ [b̂2, ̂b1) since B̂1 − b′

1 ≤ B̂1 − b̂2 = B j′+1
1 − δ ∈ B j′

, i.e. in the same budget interval.

– Case 2 (both L and W): b2 = b1 + ε . We set b̂1 = B̂1 − B j′
1 and b̂2 = B j′′+1

1 − B j+1
1 . Clearly (a) + (b) holds. (d) also holds 

since (as in Case 1) it is impossible for −i∗ = 1 to deviate and stay in the same interval, and lowering the winning bid 
of i∗ = 2 still reaches interval B j′′ (k − 1). It remains to show (c).
In both Cases 2L and 2W of Lemma 9 we have

Case 2L: B j
1 − B j′

1 + ε = b1 + ε = b2 = (B j′′
1 + ε) − B j

1 ⇒ B j′′
1 + B j′

1 − 2B j
1 = 0;

Case 2W: B j
1 − B j′

1 = b1 + ε = b2 = B j′′
1 − B j

1 ⇒ B j′′
1 + B j′

1 − 2B j
1 = 0.

Then we get that similarly to Case 1,

b̂2 − b̂1 = B j′′+1
1 − B j+1

1 − (B̂1 − B j′
1 )

= B j′′+1
1 − B j+1

1 − ((B j+1
1 − δ) − B j′

1 ) = B j′′+1
1 + B j′

1 − 2B j+1
1 + δ

= B j′′
1 + 2−(k−1) + B j′

1 − 2B j
1 − 2 · 2−k + δ = δ > 0,

as required. �
One immediate corollary is that as long as the resolution is high, the Bottom Equilibrium induces the same mapping from 

budget intervals to outcomes (since for any ε the mapping is the same one as in the continuous case). In the continuous 
case we may have (infinitely) many PSPEs, all with the mapping μ, but neither of them can be referred to as “the Bottom 
Equilibrium.” We thus say that a PSPE γ ∈ �∗(G, −) is a Bottom Equilibrium if μγ = μ, i.e. if it induces the same outcome as 
B E(G, ε) for some high resolution ε .

6. From bidding games to combinatorial bargaining

There are two ways we can think of bidding games. First, we can look for games that inherently have budgets and 
sequential bidding. While there are some examples of scenarios that arguably fit into this model, typically the incentive 
structure and/or the bidding structure is quite different (see Section 6.4 below, and the Related work section). A more 
promising way is to think of the sequential bidding process as a mechanism that is designed to increase cooperation and 
welfare among a pair of players in various scenarios.

6.1. Sequential scrip bargaining

Definition 13. A 2-player sequential scrip bargaining (SSB) is a tuple F = 〈K , v1, v2, τ 〉, where: K is the set of items (k = |K |); 
vi : 2K →R is the value function of agent i ∈ N; and τ is a permutation over items K .

Intuitively, items K are offered for sale according to order τ , and in each turn agents bid for the current item. To 
complete the game we need to describe the bidding rules. As expected, we assign a budget Bi to each agent; the highest 
bidder in each turn pays her bid to the other agent, and decides who gets the item. In case of a tie we treat agent 1 as the 
winner.

This bargaining mechanism seems like a close reminiscent of sequential auctions (Gale and Stegeman, 2001; Bae et al., 
2007). However, typically in the auction literature items are auctioned in a first- or second-price auction where the highest 
bidder pays the (first or second) bid to the seller; and utilities are quasi-linear. In particular, an agent’s utility depends not 
just on the allocation, but also on the amount of money the agent paid for her items (see Section 8.1).

SSBs differ from these standard auctions in two ways. First, while we use the first-price auction rule, the higher bidder 
pays the other player, rather than paying to the seller, highlighting that this is a bargaining mechanism rather than an 
auction. Second and more importantly, the budget Bi is “scrip money” and has no value outside the game, thus the utility 
of i from a bundle Si ⊆ K is vi(Si), regardless of how much of the budget the agent spent.
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6.2. SSBs are binary bidding games

Proposition 14. Every SSB with k items has an equivalent bidding game structure over a binary tree of height k, and vice versa.

By “equivalent to” we mean that for any resolution ε , there is a one-to-one mapping between strategy profiles in the 
original and induced game, that preserves utilities. Intuitively, we can describe any SSB as a binary tree where any internal 
node at depth k′ corresponds to an allocation of the first k′ items. Note that this mapping is independent of the initial 
budget allocation, the budget resolution, and even of the bidding rule.

Proof. In the first direction, given F = {K , v1, v2, τ }, let Kd ⊆ K be the set of first d elements of K (according to τ ). We 
construct a bidding game G = 〈S, s0, T , g, u1, u2〉 as follows. Let Sd be the set of all 2d possible bi-partitions of Kd for 
d ∈ {0, 1, . . . , k}, and S = ⋃

d≤k Sd . Note that these are partial allocations of K to the two players. s0 is the empty allocation 
(the unique member of K0). Every state can be written as s = (K 1, K 2) ∈ Sd , where K i is the set of items held by player i
in state s. There are two states accessible from s: either player 1 or player 2 get item τ (d + 1). Thus g(s) contains exactly 
two states in Sd+1. The set of terminals T coincides with Sk , i.e. all full partitions of K . Finally, for every t = (K 1, K 2) ∈ T , 
we set ui(t) = vi(K i). Thus G is an impartial binary tree of height k, which is clearly equivalent to F .

In the other direction, suppose we are given a binary bidding game G of height k. W.l.o.g. G is a balanced tree: if it is 
in DAG form, we can clone every node with several incoming edges, along with its subtree; if some branches are shorter 
than k, we extend them in the trivial way: replace each terminal t at depth k′ < k with a balanced binary subtree of height 
k − k′ , all of whose leaves are identical to t .

Now we have a balanced tree of height k. For every internal node, arbitrarily label one child as “left” and the other as 
“right”. We construct an SSB F = 〈k, v1, v2, τ 〉 as follows. Let τ be the identity permutation over K = [k]. We identify any 
path from the root s0 to a terminal t with a partition (K 1, K 2) of K where K 1 contains all levels d s.t. the left child was 
selected, and K 2 contains all other levels (i.e., where the right child was selected). Note that any K ′ ⊆ K appears in exactly 
one terminal t′

1 as K 1, and in exactly one terminal t′
2 as K 2. We set vi(K ′) = ui(t′

i). Thus the set of allocations in F coincides 
with the set of paths in the original game G . �

For example, the game Gmaj (Sec. 2.1) coincides with a sequential scrip bargaining over three identical items, where each 
agent assigns a value of 1 to bundles of size two or more, and 0 otherwise.

Since SSBs are essentially equivalent to bidding games on binary trees, an immediate corollary of Theorem 7 and Propo-
sition 14 is the following. For a set of items K , let T P (K ) be the set of Pareto-efficient allocations of K among two players.

Theorem 15. Let F = 〈K , v1, v2, τ 〉 be a sequential scrip bargaining, and let ε be some high budget resolution. Then 〈F , ε〉 has a 
Bottom Equilibrium γ , s.t. μ = μγ is a monotone and surjective mapping from Bε to T P (K ).

As we mentioned in the introduction, the set of items K need not be a collection of physical items. We next consider 
some applications of SSBs.

6.3. Applications for SSB mechanisms

Multi-issue voting. Consider a set of voters, voting over k binary issues (Winter, 1997; Lacy and Niou, 2000; Lang and Xia, 
2009). Here the voters (who are the players) have a complete (weak) preference order over the 2k outcomes, but need not 
attribute cardinal utilities to them. It is known that when preferences are unrestricted, either truthful or strategic voting 
may lead to the selection of a Pareto-dominated outcome. Voting on the issues sequentially provides a partial solution, 
but Pareto-dominated outcomes may still be selected (Lacy and Niou, 2000). While our model only applies for two voters, 
it provides strong guaranties of Pareto-efficiency, regardless of the agenda or the structure of preferences. In particular, a 
Condorcet loser is never selected, and the Condorcet winner is always selected if it exists.

Arbitration. For two self-interested parties, a bidding game can be used as an arbitration mechanism that reaches an effi-
cient outcome, and also allows a natural way to take into account parties of different importance, or weight. As a concrete 
example, we can think of the Democrats and the GOP bargaining over the various clauses of the Healthcare Act, or some 
other reform. The initial budget of each party can be set, say, based on its number of seats. Arbitration mechanisms for two 
parties (not necessarily in a combinatorial setting) have been widely studied in the literature (Sprumont, 1993; Anbarci, 
2006; De Clippel et al., 2012).

The minimal satisfaction test (MST) (De Clippel et al., 2012) is an ordinal fairness criterion, that is satisfied if the selected 
outcome is above the median outcome in every player’s preference order. That is, every player weakly prefers the selected 
outcome to at least half of all possible outcomes. De Clippel et al. studied several sequential mechanisms, and showed that 
three of them—The Alternate-Strike mechanism (Anbarci, 2006), the Voting by Alternating Voters and Vetoes mechanism (Spru-
mont, 1993), and the Shortlisting mechanism—each implement some Pareto-efficient outcome that satisfies MST.
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SSB and fair arbitration mechanisms. Consider the following parametrized extension of the MST requirement. We say that an 
outcome t satisfies the (α1, α2)-satisfaction test, if each player i weakly prefers t to at least �αi |T |� outcomes.

Proposition 16. Let 〈G, ε〉 be a bidding game over a full binary tree, then any PSPE outcome satisfies the (B1, B2)-satisfaction test.

In particular, for equal budget we get that the outcome satisfies the minimal satisfaction test of De Clippel et al. (2012).

Proof. We will prove that there is a strategy for player 1 that guarantees an outcome weakly preferred to �B1|T |� outcomes, 
and likewise for player 2 and �B2|T |�. Since any equilibrium outcome is at least as good as the maximin outcome, this 
entails the proposition.

Given G and B1, we define a zero-sum game structure G ′ , that is equivalent to G except for the utility functions. We set 
u′

1(t) = 1 if t is weakly preferred to at least �B1|T |� terminals, and −1 otherwise; and set u′
2 = −u′

1. Thus each player can 
either ‘win’ or ‘lose’ in every terminal. Note that if B1|T | is an integer, then there are exactly |T | − B1|T | +1 = (1 − B1)|T | +1
winning nodes, and B1|T | −1 losing nodes. Otherwise there are �B1|T |� losing nodes, since the next one is weakly preferred 
to all of them plus itself, i.e. to �B1|T |� terminals. Thus the number of losing nodes is exactly �B1|T |� − 1.

According to Lazarus et al. (1996), the Richman value R(s) of a node in a zero-sum win/lose game, is the minimal value 
s.t. any B1 > R(s) guarantees a victory for player 1. Lazarus et al. show that R(s) equals exactly to the probability that 
player 1 loses in the corresponding “spinner game” of G ′ (the same game only turns are taken at random rather than by 
bidding).

This probability is easy to compute. Since G ′ is a zero-sum game, at each node, white (weakly) prefers one child and 
black prefers the other. W.l.o.g., white always prefers the right child and black always prefers the left. Thus if players take 
random turns, they reach a terminal that is selected uniformly at random from T . We conclude that

R(s0) = Prt∼Uniform(T )(u′
1(t) = −1) = |{t : u′

1(t) = −1}|
|T | = �B1|T |� − 1

|T | < B1,

which means that a budget of B1 is sufficient to guarantee a victory to player 1 in G ′ . By definition of G ′ , player 1 can 
guarantee an outcome in G that is weakly preferred to �B1|T |� outcomes. The proof for player 2 is symmetric. �

The SSB mechanism has the additional property of implementing the entire set of Pareto-efficient outcomes. As the 
proposition shows, every such outcome that is attained under a given budget allocation, satisfies the parametrized MST.

Communication complexity. Suppose that Alice and Bob each hold private information a ∈ A and b ∈ B , respectively. They can 
exchange arbitrary messages sequentially in some predefined order. Given a function f : A × B → {0, 1}, the communication 
complexity of f is the total number of bits Alice and Bob must exchange so that at least one of them knows f (a, b) with 
certainty (Yao, 1979).

Communication complexity in games was studied mainly in the context of equilibrium computation, where a and b
are the utility functions of players in some game, and f is some property of the equilibrium of this game (Conitzer and 
Sandholm, 2004; Hart and Mansour, 2010). However, for an SSB with k items, the size of the valuation function of each 
player is already exponential in k (in the general case), so there is no much hope to compute an equilibrium with little 
communication.

We have a much more modest requirement. Let H = 〈�,�,h〉 be a 2-player game form, where � = �1 × �2 is the set of 
valid pure strategy profiles, and � is the set of possible outcomes, and h(γ1, γ2) ∈ � is the outcome of playing strategies 
γ1, γ2 in H .

Definition 14. The playing communication complexity of H is the number of bits players need to communicate so that at least 
one of them knows h(γ1, γ2).

In our case, � = 2K contains all possible allocations of K among the two players, and H is some mechanism the players 
use to determine the allocation.

For example, in the simple mechanism where players each choose sequentially an item from K until all items are 
selected, there are k rounds, and the communication required in each round is log(k) bits to specify which item. Thus 
the playing communication complexity of this mechanism is O (k log(k)) (even though the strategies players use may be 
complicated).

On the other hand, consider the Shortlisting mechanism (De Clippel et al., 2012). The mechanism has two rounds where 
player 1 first marks the 2k−1 outcomes that she prefers to all others, and then player 2 selects among them. Clearly 
revealing the full strategy γ1 to player 2 takes a number of bits that is exponential in k, and there does not seem to be a 
more efficient way to find h(γ1, γ2). The other mechanisms in De Clippel et al. (2012) suffer from a similar problem.10

10 Recall that these mechanisms were not designed for combinatorial valuations so this is not surprising.
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Note that given an order τ over items, the SSB F (K , τ ) is a valid allocation mechanism that maps any pair of strategies 
γ = (γ1, γ2) to an allocation μγ ∈ 2K .

Proposition 17. For any order τ , the playing communication complexity of SSB is O (k2).

Proof. An SSB has k rounds. In each round, each player needs to submit a bid, and the winner decides on whether to 
take or give the current item. For any constant resolution R , there are R2k possible budgets (and thus possible bids). So 
log(R2k) = O (k) bits are sufficient to specify the bid. One additional bit is sufficient to specify the decision on the item. 
Thus in total each player is required to transfer O (k2) bits in order to play her strategy. �

SSB is the first mechanism that guarantees efficiency, fairness, and low playing communication complexity. Thus SSB may 
be considered as a feasible and desirable mechanism for combinatorial bargaining/arbitration when the playing parties are 
asymmetric.

Zero-sum games. In a zero-sum game, player 1 gets an outcome that beats B1|T | outcomes, if and only if player 2 gets 
an outcome that beats B2|T | outcomes. Thus by Proposition 16 the set of outcomes and the utility functions define the 
(unique) PSPE outcome completely, regardless of the tree structure.

6.4. Other games

Consider any (impartial) game in tree-form. If the tree is not binary, we can modify it by recursively breaking decision 
nodes to a subtree of binary decisions. Then we can divide a large or continuous budget among the players, and let them 
play the new bidding game. If players adhere to the Bottom Equilibrium, then the initial budget partition will determine the 
final outcome (from T P (G)). Thus we can get a good outcome even in games where playing by turns would lead to a poor 
outcome. In particular, with proper initial budgets we can implement the outcome with maximum social welfare, maximum 
Egalitarian welfare, etc.

Centipede games. One class of games that falls under the conditions of Theorem 7, is that of Centipede games (Rosenthal, 
1981). Such games are a notorious example to how rationality leads players to end up in poor outcomes. Under random turn 
there are still Centipede games where players always choose to finish early, even though staying in the game is eventually 
significantly better for both.

Nevertheless, in our game setting there is a PSPE where players are guaranteed to continue until they reach one of the 
Pareto-efficient outcomes (the last two leaves).

Nash bargaining game. The Nash bargaining game (Nash, 1950) for two players is typically described by a (convex) set of 
feasible outcomes F in the plane, whose boundary forms the Pareto-efficient frontier, and a status-quo point q. Given F
and q, we can think of an extensive-form bargaining game, where players start from q and at each state (point of the grid) 
they can either “go right” (increase the utility of player 1) or “go up” (increase the utility of player 2). The terminal states 
are the outcomes along the Pareto frontier. In this case it is clear that every outcome is Pareto-efficient (as this is how 
we defined the terminal states), but the properties of monotonicity and Pareto-surjective are still interesting. The (unique) 
PSPE induces a generalized solution concept for the Nash bargaining game (a point on the Pareto frontier for any budget 
allocation).

A natural question is how the PSPE solution—in particular for the case of equal budgets—compares with other solution 
concepts such as the Nash bargaining solution and the Kalai–Smorodinsky bargaining solution (Kalai and Smorodinsky, 
1975). We note that there is much interest in non-cooperative implementations of various bargaining solutions, e.g. (Moulin, 
1984).

To answer our question, we first modify the game tree described above, by complementing each leaf (a point on the 
Pareto frontier) to a subtree with identical leafs, such that all leafs are at the same depth. Clearly this does not change the 
equilibria of the game—it just means the game continues for a few more redundant rounds after the outcome is already 
determined. Since the SSB induced by a Nash bargaining game is ordinally-zero-sum (as all terminals are on the Pareto 
frontier), binary, and complete, it follows from Proposition 16 that when the budget is equally partitioned, the realized 
outcome is reached when players make the same number of moves. In other words, if we normalize q to the origin (0, 0), 
then both players have the same utility (or the closest approximation to same utility), which coincides with the Egalitarian, 
or proportional, solution (Kalai, 1977).

7. Computational issues

In this section we elaborate on the algorithmic considerations in computing the Bottom Equilibrium. The key contribution 
in this section is Algorithm 3, presented in page 188. We also implemented the algorithm in Matlab (along with code to 
generate simple binary bidding games), and will share the code upon request.
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Proposition 18. Let G be a binary bidding game structure. Algorithm 3 computes a profile γ that is outcome-equivalent to a Bottom 
Equilibrium of 〈G,−〉. Moreover, Algorithm 3 runs in time |S| · poly(|T |) = poly(|S|).

Before showing the full proof, we explain the intuition. How can we even represent the equilibrium efficiently, if at any 
node there are infinitely many budgets to consider (or exponentially many in k, with discrete high resolution)? The answer 
lies in monotonicity. Since we can order all reachable terminals, and the outcome is monotone in the budget of player 1, 
we only need to find the cutoff points in the interval [0, 1] where the next terminal becomes the outcome. There can be 
at most |T | − 1 such cutoff points, and the main challenge is to show: (a) that they can be computed efficiently from the 
cutoff points of both children; and (b) that for every budget between two given cutoff points, we can efficiently compute 
some bids that reach the correct equilibrium outcome.

Proof. We saw that at any level k budget interval B j
(k), the equilibrium bids in all B1 ∈ B j

1 reach the same level k − 1

intervals (which we previously denoted by B j′
(k − 1), B j′′

(k − 1)), although they may reach different budget points. Our 
algorithm only computes this mapping, i.e. from j to j′ and j′′ , and then assigns arbitrary bids that reach those intervals 
from B j

1. These bids may not be stable themselves, but they contain enough information to reconstruct the equilibrium bids 
from any B1 ∈ B j

1 according to Theorem 13.
There are three differences between Algorithm 2 (see page 175) and Algorithm 3: (a) the fast algorithm only computes 

the equilibrium in specific budget points (zlr ), rather than for any possible budget B ∈ Bε (or even any B j
1(k)); (b) when 

black deviates, the fast algorithm increments the bid by a quantity larger than ε; (c) after computing the equilibrium at all 
critical budget points, the fast algorithm “filters” some points out, and does not add them to the description of the PSPE. 
In contrast to ε in Algorithm 2, the exact size of δ is not important, as long as it is sufficiently small (anything below 
2−height(G)−1 would suffice).

We need to show that despite those differences we get the same equilibrium outcome, i.e., the same mapping μ :
[0, 1] → T (G).

The a’th budget interval is the union of several consequent subintervals of size 2−k . Formally, [Fs(a), Fs(a + 1)) =⋃
2k Fs(a)≤ j<2k Fs(a+1) B

j
.

We start by showing (b), i.e. that by bidding b′
2 = b1 + δ or b′′

2 = min{B1 − Fs1 (a1 − 1), Fs2 (a
′
2 + 1) − B1 − δ}, the same 

equilibrium is reached. We first argue that b′′
2 > b1 (so black indeed takes). Since B1 − b1 ≥ Fs1 (a1), and Fs1 is strictly 

increasing, clearly B1 − Fs1 (a1 − 1) > b1.
Similarly, B1 + b′

2 ∈ [Fs2 (a
′
2), Fs2 (a

′
2 + 1)) by definition of f s2 . Thus Fs2 (a

′
2 + 1) − B1 − δ > b′

2 − δ = b1. We conclude that 
b′′

2 = min{B1 − Fs1 (a1 − 1), Fs2 (a
′
2 + 1) − B1 − δ} > b1.

Next, note that by bidding b′
2 or b′′

2, black reaches the same budget interval a′
2 in s2. The problem with just setting 

b′′
2 = Fs2 (a

′
2 + 1) − B1 − δ, is that this may prevent a further deviation by white, that would have been possible after a 

lower increment. That is, we may reach an equilibrium that is not the lowest-bids equilibrium. However, if white has a 
deviation after black, then we only care if she has a deviation that brings her all the way to the next budget interval 
a1 − 1 in s1—otherwise black would deviate back to a′

2 with another δ increment and so on. Therefore constraining b′′
2 ≤

B1 − Fs1 (a1 − 1) would prevent this problem by always allowing white to bid the same. In other words, it guarantees that 
a′′

1 = a′
1.

As a concrete example, consider such an ascending auction in Fig. 12, for B1 = 0.4. Whenever black increases his bid b′′
2, it 

should be to the next point among b′′
2 = Fs2 (2) − B1 − δ = 0.2 − δ, b′′

2 = B1 − Fs1 (1) = 0.4, and b′′
2 = Fs2 (3) − B1 − δ = 0.6 − δ, 

since if there is any deviation, the auction will eventually reach this point. The corresponding remaining budget B1 + b′′
2

for each of the three options is marked by d1, d2 and d3, respectively. Note that d2 and d3 both belong to the same budget 
interval of s2, but skipping d2 may result in looking over an equilibrium where white bids all of B1 and wins.

We now turn to show (a).
By induction, the budget between any consecutive critical points [al, al + 1) yields the same outcome in sl , and likewise 

for sr . Fix some r, l and let B1 ∈ [zlr, zlr+), where zlr+ = min{zl′r′ : zl′r′ > zlr}. We argue that whether white or black win in 
(s, zlr), the winner reaches the same next state s′ and with the same remaining budget as from (s, B1). The reason is the 
same as in the proof of Theorem 7(B) and of Theorem 13 and we do not repeat it.

It is left to show (c), i.e. that no information is lost when filtering the (|T | + 1)2 critical points. Due to monotonicity, T is 
sorted, thus U contains the first index of every unique entry in T . The filtering removes redundant parts of the equilibrium, 
as there are at most |T | points where the outcome changes. Thus we only consider these points.

Finally, we consider the complexity of the fast algorithm. After filtering, the size of the lists Fs, T ∗
s , A1

s , A2
s is at most 

|T | each. With every deviation, either a1 strictly decreases or a2 strictly increases, and thus there can be at most 2|T |
deviations. The heaviest part in computing a deviation is calculating f si . Since |Fsi | ≤ |T | a naïve computation is linear in 
|T |. Therefore Ascending − Auction() runs in O (|T |2). It is called at most |T |2 times in every internal node, thus the total 
complexity is O (|S| · |T |4) = O (|S|5). �
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Fig. 12. The top and bottom lines show the budget intervals in both children, where Fs1 = (0, 0.2, 0.7) (say, for the left child), and Fs2 = (0, 0.6). Any 
budget maps to a unique interval in each child. E.g., f s1 (0.3) = 2 since 0.3 ∈ [Fs1 (2), Fs1 (3)). Note that the rightmost interval always ends at 1. The middle 
line shows all potential cutoff points (before filtering) in node s: in increasing order, (zlr)lr = (0, 0.1, 0.3, 0.35, 0.4, 0.5, 0.6, 0.65, 0.8, 0.85, 1). For example, 
zlr = 0.4 = 0.2+0.6

2 is obtained for l = 2, r = 2, as shown in the figure. The points marked by d j are the only deviations that black needs to consider, where 
d1, d3 correspond to the right edge of s2 intervals (minus δ), and d2 corresponds to the left edge of s1 interval (marked with ∗).

Algorithm 3 Find-PSPE-fast(G).

Initialize(F , T ∗
, A1

, A2
, I);

// See description of Initialize() for explanation of variable roles.
for every leaf t: do

// In the leaves there is only one budget interval, which is all the range [0, 1].
Ft ← (0) ; // An array of length one
T ∗

t ← (t);

// Traverse nodes bottom up:
for every node s in post-order do

Let sl, sr be the two children of s;

For every al = 1, . . . , |Fsl | + 1 and ar = 1, . . . , |Fsr | + 1, set zlr = Fsl (al )+Fsr (ar )

2 ;
Sort {zlr}lr in increasing order;
// zlr are the only “critical points” of the budget in state s. The equilibrium bids for any point in the 

interval [zlr , zlr+) reach the same budget interval in the next state (either sl or sr).
Initialize global empty lists F , T , A1, A2;
for every l, r (in increasing order of zlr ) do

Set B1 = zlr ; // Budget of player 1
// Compute the Bottom equilibrium of the current step for budget B1 (and thus for all its interval)
〈〈s1,a1〉 , 〈s2,a2〉 , t〉 ← Ascending-Auction(G, s, B1);
Append(F , B1); Append(T , t);
Append(A1, 〈s1,a1〉); Append(A2, 〈s2,a2〉)

U ← T (1);
for  = 2, 3, . . . , |T | do

if T () 	= T ( − 1) then
Append(U , );

// Write down the equilibrium strategies in s:
Fs ← Filter(F , U ); T ∗

s ← Filter(T , U );
A1

s ← Filter(A1, U ); A2
s ← Filter(A2, U );

return γ ←
〈
F , T

∗
, A

1
, A

2
〉
;

Function Initialize(F , T ∗
, A1

, A2
).

for every node s ∈ S: do
Initialize global empty lists Fs, T ∗

s , A1
s , A2

s ;

// A variable X is a list with one entry per state, i.e. X = (Xs)s∈S.
// Intuitively, Fs contains all budget cutoff points. Fs(1) = 0 always. For every a ∈ {1, 2, . . . , |Fs|}, all budgets 

B1 ∈ [Fs(a), Fs(a + 1)) are equivalent, where Fs(a′) = 1 for all a′ > |Fs|. We use f s : [0, 1] → {1, 2, . . . , |Fs|} as the 
inverse of Fs, where f s(B1) is the index of the budget interval in s that contains B1. Formally, 
f s(B1) = max{a : B1 ≥ Fs(a)}.

// T ∗
s (a) ∈ T is the outcome that will be reached from state (s, Fs(a)).

// Ai
s is the strategy of i, where Ai

s(a) = 〈
s′,a′〉.

7.1. Compiling small DAGs from succinct valuations

Suppose we are given a sequential scrip bargaining, with some succinct representation of the value functions vi . While 
we can apply Proposition 14 to construct an equivalent bidding game, the naïve construction would yield a complete binary 
tree of height k. In particular, the number of nodes |S| would be exponential in k. In the worst case, there is not much we 
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Function Ascending-Auction(G, s, B1).

b1, b2 ← 0 ; // Initialize bids
al ← f sl (B1);
ar ← f sr (B1);
s1 ← argmax j∈{l,r} u1(T ∗

s j
(a j)); // Child preferred by white

s2 ← argmax j∈{l,r} u2(T ∗
s j

(a j)); // Child preferred by black
if s1 = s2 then

// White wins with bid 0, and plays s1. Reaches budget interval indexed by a1 (either al or ar).
a1 ← f s1 (B1);
t1 ← T ∗

s1
(a1);

return 〈〈s1,a1〉 , 〈s1,a1〉 , t1〉;

repeat
// Compute outcome under current bids b1, b2:
a1 ← f s1 (B1 − b1); t1 ← T ∗

s1
(a1); // Current outcome

a2 ← f s2 (B1 + b2);
b′

2 ← b1 + δ; // Try a deviation of black
a′

2 ← f s2 (B1 + b′
2); t′

2 ← T ∗
s2

(a′
2) ; // Outcome after deviation

if b′
2 > 1 − B1 or t′

2 �2 t1 then
// Black cannot or would not raise. In this budget interval (at least B1 = zlr and below zlr+), white 

wins. The bid b1 is set so that B1 − b1 falls in the budget interval indexed by a1 in s1.
return 〈〈s1,a1〉 , 〈s2,a2〉 , t1〉;

// A higher bid of black with the same outcome as b′
2:

b′′
2 ← min{B1 − Fs1 (a1 − 1), Fs2 (a′

2 + 1) − B1 − δ};
b′′

1 ← b′′
2 ; // Try a deviation of white

a′′
1 ← f s1 (B1 − b′′

1);
t′′

1 ← T ∗
s1

(a′′
1);

if t′′
1 �1 t′

2 then
// White would not raise (note that b′′

1 ≤ B1 by definition of b′′
2 so white can always raise). In this 

budget interval, black wins and plays s2. Reaches budget interval indexed by a′
2.

return
〈〈s1,a1〉 ,

〈
s2,a′

2

〉
, t′

2

〉
;

b1 ← b′′
1; b2 ← b′′

2;
until;

Function Filter(L, U ).

Initialize L0 as an empty list;
for j = 1, . . . , |U | do

 ← U ( j);
Append(L0, L());

return L0

can do. For example, if buyers assign distinct utilities to exponentially many bundles of items, then any bidding game must 
contain this number of terminal states. Also, if |T | is fixed, but merely computing an optimal partition of K is NP-complete, 
then it must also be NP-hard to construct an equivalent succinct bidding game (if such a game even exists). This is since 
constructing the tree would in particular require us to efficiently generate all |T | outcomes, and one them is the optimal 
partition (we just check all of them).

Additive valuations. We first solve a simple case, where valuations are additive, i.e., vi(S) = ∑
j∈S vi( j). Suppose that we 

sold the first 4 items out of k, whose values to agent 1 are 2, 2, 4, and 3. Then the agent does not care if she currently 
has the first two items or just the third. If the other agent is also indifferent between these partial partitions, then we can 
represent them with a single state.

We can generalize this observation using a dynamic programming technique, similar to the one used for Knapsack 
problems (Bellman and Dreyfus, 1962).

Proposition 19. Given an additive SSB F with integer valuations, there is an equivalent binary bidding game with |S| ≤ (k + 1) · M
states, where M = (v1(K ) + 1) × (v2(K ) + 1). Further, such a bidding game can be constructed efficiently.

Proof. We assign a state s j,m1,m2 for every j ∈ {0, . . . , k} and every pair m1 ∈ {0, 1, . . . , v1(K )}, m2 ∈ {0, 1, . . . , v2(K )}. The 
initial state is s0,0,0. For every j = 1, . . . , k, we go over all states in level j − 1. We connect each such state s j−1,m1,m2

with two children: s j,m1+v1(τ ( j)),m2 , and s j,m1,m2+v2(τ ( j)) . That is, either agent 1 or agent 2 gets the j’th item (according to 
order τ ). We then add all new children to level j.

Note that any state at level j corresponds to a partition of the first j items. Finally, we identify the terminals T with the 
last level k (full partitions), and assign ui(sk,m1,m ) = mi . �
2
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Using an implementation of Algorithm 3 in Matlab, we computed the PSPE prices for an SSB with k identical items. When 
the initial budget is the same (0.5 for each player), we witness a clear pattern increasing prices over time. This pattern breaks 
when we start from different initial budget allocations.

Weight-based games. A similar technique can be applied in games where the valuations are not additive, but still base on 
some additive notion of weight. We say that vi is weight-based if every item has a fixed weight w j , and there is a function 
f i : N → R, s.t. vi(S) = f i(

∑
j∈S w j). Note that without further constraints any function is weight-based, as we can make 

sure that each bundle has a different total weight. However if weights are bounded then we get a succinct representation 
for a subclass of functions.

This idea can be further generalized. We say that vi is multi-weight-based if every item has a vector of fixed weights 
(w1

j , . . . , w
q
j), and there is a function f i : N → R, s.t. vi(S) = f i(

∑
j∈S w1

j , . . . , 
∑

j∈S wq
j). As a concrete example, suppose 

that the items are computing machines, each with some properties like storage, memory, bandwidth, etc. The value of a 
set of machines to a client depends only on the total storage, total memory, and total bandwidth, regardless of how these 
resources are allocated across among the machines.

Note that additive SSBs are a special case of multi-weight-based SSBs, where there are two dimensions. f1(S) =∑
j∈S w1

j , f2(S) = ∑
j∈S w2

j . Note however that we allow f i to be a completely arbitrary function, and it does not even 
need to be monotone.

Proposition 20. Given a multi-weight-based SSB F , there is an equivalent bidding game with |S| ≤ (k + 1) · M2 states, where M =
(w1(K ) + 1) × · · · × (wq(K ) + 1). Further, such a bidding game can be constructed efficiently.

Proof. Construction is very similar to Proposition 19. We identify each state at level j with a tuple 
〈
j,m1

1,m1
2, . . . ,mq

1,mq
2

〉
, 

where mr
i now tracks the total dimension-r weight of the bundle owned by agent i. We link each state to its two children 

by adding all respective weights of item τ ( j) to the bundle owned by one of the agents.
Finally, in every terminal t = s〈

k,m1
1,m1

2,...,mq
1,mq

2

〉 (state that corresponds to a full allocation), we set u1(t) = f1(m1
1, . . . , m

q
1),

u2(t) = f2(m1
2, . . . , m

q
2). �

As a corollary from Propositions 18 and 20, a PSPE in multi-weight-based and in additive SSBs can be computed effi-
ciently. That is, in time that is polynomial in the number of items and in the total weight/value.

Voting with single peaked preferences. If voters have a strict preference order over all 2k possible outcomes of the game, 
there cannot be a succinct representation, since we will need 2k terminals. However consider the following scenario. Each 
voter as an “ideal” point t∗

i ∈ {0, 1}k . The utility of any other outcome only depends on the Manhattan distance from t∗
i , 

i.e. on the number of coordinates in which t, t∗
i differ. We may also assign a different weight to each coordinate, so that 

ui(t) = − 
∑

j≤k wij |t∗
i ( j) − t( j)|.

This scenario has a simple mapping to an SSB of additive items: The value to i of every coordinate on which t∗
1, t∗

2 differ 
is wij . If bidder i “buys” coordinate j she may set it to t∗

i ( j). The value of every coordinate j on which t∗
1( j) = t∗

2( j) can be 
arbitrary. The bidders will not compete on these coordinates, as it is Pareto-optimal to set t( j) = t∗

1( j).

Pathfinding. The items in a pathfinding problem over a graph, are pairs s = 〈location, time〉. In a naïve representation, all 
pairs would be allocated, and the value of a bundle of pairs to an agent, would be the optimal legal path from source to 
target that this bundle contains. If our game states would each represent a subset of such pairs, we would quickly reach an 
exponential blowup. We modify the auction so that a state 〈location1, location2, time〉 means that each agent i is in locationi
at time, after reaching there from the start. Thus we do not auction states (tuples) in an arbitrary order, but rather construct 
an alternative bidding game. We present an outline of the construction.

We start from s0 = 〈start1, start2,0〉, and link each state s = 〈location1, location2, time〉 to two other states: the first 
is just a copy of s, and the second is one of the legal moves from s, for example 

〈
location′

1, location′
2, time + 1

〉
, where 

location′
i is either a neighbor of locationi or locationi itself, and it does not hold that location′

1 = location′
2. We keep enough 

copies of s to exhaust all legal moves (at most the number of locations, squared). The terminal states are those where 
time = MaxT ime, or both agents reached their targets. After the first agent reaches her target, we record her time. The 
negative utility to each agent in a terminal is her time.

Thus, in total we have at most MaxT ime2 × |locations|4 states including all copies.

8. Discussion and related work

We presented a simple and intuitive mechanism—sequential scrip bargaining—that implements the full range of Pareto-
efficient allocations of items to two agents with arbitrary valuation functions. Further, our mechanism can be applied to 
efficiently and fairly settle other combinatorial bargaining problems that involve two parties. The pure subgame-perfect 
equilibrium can be computed in time that is polynomial and the size of the full game tree/DAG, and for many classes of 
valuations, polynomial in the size of the succinct representation.



R. Meir et al. / Games and Economic Behavior 112 (2018) 166–193 191
8.1. Related work

Richman games. Lazarus et al. (1996, 1999) were the first to systematically analyze bidding variations of zero-sum games. 
They coined the term “Richman games” in honor of David Ross Richman, the original inventor, and considered games with 
an infinitely divisible unit of budget. A Richman game is a directed graph (possibly with cycles) with two terminal nodes 
(say, black and white), and a full play is a path starting from some node and ending in a terminal node. The goal of each 
player is to end the game in her own terminal. The main focus of Lazarus et al. was on the following question: “in every 
node, what is the minimal fraction of the budget that will guarantee a victory for the white player?” The Richman function
assigns a unique value to every node R(s), which is the average of the Richman values of its lowest and highest neighbors 
(normalizing the values of white and black terminals to 0 and 1, respectively). Lazarus et al. show that the Richman function 
exists on every graph and is also unique if the graph is finite. It turns out that R(s) marks the critical budget: if B1 > R(s)
then white can force a victory when starting from node s; if B1 < R(s) then black can force a victory. Moreover, R(s) is also 
the exact probability that black wins in a game where instead of bidding, the player in each turn is selected by a fair coin 
toss (see Peres et al., 2007 for more details on random-turn games).

Lazarus et al. further study other variations of bidding games by applying different auction rules. In particular, in the 
Poorman game the highest bidder pays the bank rather than to the other player, so the total budget shrinks with every step.

Develin and Payne (2010) extended the theory of zero-sum bidding games in several important aspects. In most recre-
ational games, such as Tic-Tac-Toe, Chess, and Checkers, white and black can perform different actions when in the same 
board state s, thus games are not necessarily impartial. Develin and Payne extended some of the previous results of Lazarus 
et al. to partial games such as Chess and Tic-Tac-Toe. In addition, they considered discrete bids, and the implications of 
various tie-breaking schemes. To demonstrate their approach, Develin and Payne showed a complete solution of bidding 
Tic-Tac-Toe for every possible initial budget. Interestingly, in the continuous case the Richman value of the initial state in 
Tic-Tac-Toe is 133/256 ≡ 0.519, which means that an advantage of ∼ 4% in the initial budget is sufficient to guarantee a 
victory. In a related work, Payne and Robeva (2008) developed a near-optimal algorithm for playing bidding Hex. In a very 
recent paper, Larsson and Wästlund (2017) explore some intricacies of partiality, and in particular show examples of Chess 
endgames where no value exists.

Negotiations and bargaining. In typical bargaining problems there is a conflict deal that is implemented if agents cannot 
reach agreement (Nash, 1950), or utility depends on time until agreement (Rubinstein, 1982; Fatima et al., 2004). In our 
mechanism there is no conflict deal or discounting and thus it is hard to compare the protocols directly.

Yet, our Bottom Equilibrium can be intuitively thought of as a combinatorial version of the minimal sufficient concession
principle, that is often employed by agents in the monotonic concession protocol (Zlotkin and Rosenschein, 1996): at every 
node the winner makes the minimal concession (in terms of future bargaining power) that allows her to win the round.

Sequential combinatorial auctions. “Standard” sequential auctions (with quasi-linear utilities rather than budgets) have been 
studied by several researchers (Gale and Stegeman, 2001; Rodriguez, 2009; Leme et al., 2012). These papers focused on 
particular classes of value functions (unit-demand, submodular, etc.) and generally demonstrated that while pure equilibria 
exist, they may be substantially inefficient for some of these classes. Inefficient outcomes occur even in 2-buyer, complete 
information auctions (Bae et al., 2007).

All-pay rules and Colonel Blotto. Powell (2009) models a particular sequential game between an attacker and a defender 
(a sequential Colonel Blotto game). This game is essentially a specific general-sum bidding game over a degenerated tree 
(a path), where the utility in every match—the success probability—is determined by the invested resources of each party. 
Our model does not cover this particular game due to several differences. First, in our model the utility is only determined 
in the leaves rather than accumulated over the entire path;11 More importantly, the utility in every match depends exactly 
on the “bids” (investments) of both parties, and both parties discard their bids (an “all-pay” auction).

Another all-pay variation of bidding games was studied in Menz et al. (2015), who developed a fast algorithm for 
computing the optimal strategy. Note that the optimal strategy under all-pay rules must be mixed, i.e. use probabilistic bids.

Sequential auctions with budgets. Lastly and closest to our work, Huang et al. (2012) study particular bidding game, in 
which two agents use an initial budget to bid over identical items that are sold sequentially. This is essentially a sequential 
scrip auction mechanism, yet their model is not strictly a special case of ours, as they add some additional refinements.12

While we believe that the models are very close, the focus on a particular value function (which makes the game an 
almost-zero-sum game) allows Huang et al. to provide an accurate characterization of the allocations under PSPE as a 
function of the budgets. Our results are qualitative in nature, but apply to arbitrary utility functions.

11 This would be a minor difference if the number of outcomes was finite.
12 In Huang et al. (2012) players pay to the bank rather to one another (the Poorman variation), and also try to minimize spent budget as a secondary 

goal.
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Huang et al. prove that item prices decrease over time. Curiously, we observe (empirically) that prices increase.13 One 
interpretation is that the result of Huang et al. is an artifact of the auction rule, as in the Poorman version the total amount 
of money is also decreasing in each round.

8.2. Variations

By changing the auction rules, different types of bidding games arise. For example, an all-pay auction may better describe 
various real world scenarios like security games, sport matches, and R&D competitions. However these games typically do 
not have a pure equilibrium point, and are more difficult to analyze (see Related work section for specific games that have 
been studied). Using a second-price rather than a first-price auction to determine the winner should not have a large effect, 
since in equilibrium the bids will always be very close.

An important question is whether our results still hold when the “Poorman game” version is played, i.e. when the highest 
bidder pays the bank rather than the other player. Since in the continuous case the strategy at a given node only depends 
on the fraction B1/B2, there is a one-to-one mapping between strategies in the continuous Richman and Poorman variations 
of a game. We would thus expect our main results (e.g. Pareto-optimality of the Bottom Equilibrium) to hold, but this would 
require a separate proof. Also computational properties may be far less convenient. The Poorman version has one important 
advantage over the Richman version—the game definition naturally extends to any number of players. It is an open question 
whether a Pareto-optimal PSPE exists in a binary game for more than two players, either when playing together, or when 
connected in a network of bilateral bargaining connections (Chakraborty et al., 2009). We believe that the answer to this 
question is negative, since there are simple Poorman games with three players that are non-monotone.

8.3. Future work

Other than studying the variations mentioned above, there are several questions that remain open. One natural direction 
is how changing the order in which items are offered (or the agenda in sequential voting) affects the induced equilibrium. It 
is known that in general bargaining problems the agenda can strongly affect the outcome (Fershtman, 1990; Inderst, 2000). 
While the agenda may also affect the outcome in our model, it is possible that there are classes of valuations where all 
orders yield a similar outcome in PSPE. For example, from Proposition 16 the order of issues in zero-sum bargaining games 
does not matter.

More important questions arise when non-determinism enters. For example, we conjecture that our results (both exis-
tence and optimality) also hold under random tie-breaking, and that such a randomized mechanism in fact leads to better 
fairness guarantees. On the other hand random tie-breaking can exponentially increase the number of possible outcomes 
and thus efficient computation may not be possible.14 In addition, agents’ valuations themselves may be private and sam-
pled from some distribution, and we are interested whether similar results regarding efficiency and monotonicity apply in 
games without complete information.

Finally, experiments with bargaining games in the spirit of Weg et al. (1990); De Clippel et al. (2012) may reveal whether 
the game-theoretic analysis is a good proxy to the actual behavior, and whether our mechanism can improve welfare and 
satisfaction in practice.

Acknowledgments

The authors thank David Parkes and Urban Larsson for valuable feedback on the manuscript.

References

Albert, Michael, Nowakowski, Richard, Wolfe, David, 2007. Lessons in Play: An Introduction to Combinatorial Game Theory. A K Peters Ltd.
Anbarci, Nejat, 2006. Finite alternating-move arbitration schemes and the equal area solution. Theory Decis. 61 (1), 21–50.
Bae, Junjik, Beigman, Eyal, Berry, Randall, Honig, Michael L., Vohra, Rakesh, 2007. Efficiency bounds for sequential resource allocation auctions. In: CDC’07, 

pp. 765–770.
Bellman, R.E., Dreyfus, S.E., 1962. Applied Dynamic Programming. Princeton University Press, Princeton, NJ.
Bhat, Jay, Payne, Sam, 2009. Bidding chess. Math. Intell. 31 (4), 37–39.
Chakraborty, Tanmoy, Kearns, Michael, Khanna, Sanjeev, 2009. Network bargaining: algorithms and structural results. In: ACM-EC’09, pp. 159–168.
Conitzer, Vincent, Sandholm, Tuomas, 2004. Communication complexity as a lower bound for learning in games. In: Proceedings of the Twenty-First Inter-

national Conference on Machine Learning. ACM, p. 24.
De Clippel, Geoffroy, Eliaz, Kfir, Knight, Brian, 2012. On the Selection of Arbitrators. Technical report. Working Paper. Department of Economics Brown 

University.
Develin, Mike, Payne, Sam, 2010. Discrete bidding games. Electron. J. Comb. 17 (1), R85.
Fatima, Shaheen S., Wooldridge, Michael, Jennings, Nicholas R., 2004. An agenda-based framework for multi-issue negotiation. Artif. Intell. 152 (1), 1–45.

13 Using a fast implementation of our algorithm in Matlab, we computed the PSPE prices for an SSB with k identical items. When the initial budget is 
the same (0.5 for each player), we witness a clear pattern of increasing prices over time. This pattern breaks when we start from unequal initial budget 
allocations.
14 We thank Michael Simkin for verifying this assertion.

http://refhub.elsevier.com/S0899-8256(18)30137-4/bib616C62657274323030376C6573736F6E73s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib616E62617263693230303666696E697465s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib62616532303037656666696369656E6379s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib62616532303037656666696369656E6379s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib7265313936326170706C696564s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib626861743230303962696464696E67s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib4368616B7261626F7274793A32303039s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib636F6E69747A657232303034636F6D6D756E69636174696F6Es1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib636F6E69747A657232303034636F6D6D756E69636174696F6Es1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib64653230313273656C656374696F6Es1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib64653230313273656C656374696F6Es1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib44503130s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib666174696D61323030346167656E6461s1


R. Meir et al. / Games and Economic Behavior 112 (2018) 166–193 193
Fershtman, Chaim, 1990. The importance of the agenda in bargaining. Games Econ. Behav. 2 (3), 224–238.
Gale, Ian L., Stegeman, Mark, 2001. Sequential auctions of endogenously valued objects. Games Econ. Behav. 36 (1), 74–103.
Hart, Sergiu, Mansour, Yishay, 2010. How long to equilibrium? The communication complexity of uncoupled equilibrium procedures. Games Econ. Behav. 69 

(1), 107–126.
Huang, Zhiyi, Devanur, Nikhil R., Malec, David, 2012. Sequential auctions of identical items with budget-constrained bidders. arXiv preprint arXiv:1209 .1698.
Inderst, Roman, 2000. Multi-issue bargaining with endogenous agenda. Games Econ. Behav. 30 (1), 64–82.
Kalai, Ehud, Smorodinsky, Meir, 1975. Other solutions to Nash’s bargaining problem. Econometrica, 513–518.
Kalai, Ehud, 1977. Proportional solutions to bargaining situations: interpersonal utility comparisons. Econometrica, 1623–1630.
Lacy, Dean, Niou, Emerson M.S., 2000. A problem with referendums. J. Polit. 12 (1), 5–31.
Lang, Jérôme, Xia, Lirong, 2009. Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57 (3), 304–324.
Larsson, Urban, Wästlund, Johan, 2017. Endgames in bidding chess. arXiv preprint arXiv:1703 .01624.
Lazarus, Andrew J., Loeb, Daniel E., Propp, James G., Ullman, Daniel, 1996. Richman games. In: Games of no Chance. In: MSRI Publications, vol. 29, 

pp. 439–449.
Lazarus, Andrew J., Loeb, Daniel E., Propp, James G., Stromquist, Walter R., Ullman, Daniel H., 1999. Combinatorial games under auction play. Games Econ. 

Behav. 27 (2), 229–264.
Leme, Renato Paes, Syrgkanis, Vasilis, Tardos, Éva, 2012. Sequential auctions and externalities. In: SODA’12, pp. 869–886.
Menz, Michael, Wang, Justin, Xie, Jiyang, 2015. Discrete all-pay bidding games. arXiv preprint arXiv:1504 .02799.
Moulin, Herve, 1984. Implementing the Kalai–Smorodinsky bargaining solution. J. Econ. Theory 33 (1), 32–45.
Nash, John F., 1950. The bargaining problem. Econometrica, 155–162.
Payne, Sam, Robeva, Elina, 2008. Artificial intelligence for bidding hex. arXiv preprint arXiv:0812 .3677.
Peres, Yuval, Schramm, Oded, Sheffield, Scott, Wilson, David B., 2007. Random-turn hex and other selection games. Am. Math. Mon. 114 (5), 373–387.
Powell, Robert, 2009. Sequential, nonzero-sum “Blotto”: allocating defensive resources prior to attack. Games Econ. Behav. 67 (2), 611–615.
Rodriguez, Gustavo E., 2009. Sequential auctions with multi-unit demands. B.E. J. Theor. Econ. 9 (1).
Rosenthal, Robert W., 1981. Games of perfect information, predatory pricing and the chain-store paradox. J. Econ. Theory 25 (1), 92–100.
Rubinstein, Ariel, 1982. Perfect equilibrium in a bargaining model. Econometrica, 97–109.
Sprumont, Yves, 1993. Intermediate preferences and Rawlsian arbitration rules. Soc. Choice Welf. 10 (1), 1–15.
Weg, Eythan, Rapoport, Amnon, Felsenthal, Dan S., 1990. Two-person bargaining behavior in fixed discounting factors games with infinite horizon. Games 

Econ. Behav. 2 (1), 76–95.
Winter, Eyal, 1997. Negotiations in multi-issue committees. J. Public Econ. 65 (3), 323–342.
Yao, Andrew Chi-Chih, 1979. Some complexity questions related to distributive computing (preliminary report). In: Proceedings of the Eleventh Annual ACM 

Symposium on Theory of Computing. ACM, pp. 209–213.
Zlotkin, Gilad, Rosenschein, Jeffrey S., 1996. Mechanism design for automated negotiation, and its application to task oriented domains. Artif. Intell. 86 (2), 

195–244.

http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6665727368746D616E31393930696D706F7274616E6365s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib67616C653230303173657175656E7469616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib68617274323031306C6F6E67s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib68617274323031306C6F6E67s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6875616E673230313273657175656E7469616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib696E6465727374323030306D756C7469s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6B616C6169313937356F74686572s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6B616C61693139373770726F706F7274696F6E616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C6163793230303070726F626C656Ds1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C616E673230303973657175656E7469616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C617273736F6E32303137656E6467616D6573s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C617A6172757331393936726963686D616Es1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C617A6172757331393936726963686D616Es1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C617A3939s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C617A3939s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6C656D653230313273657175656E7469616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6D656E7A323031356469736372657465s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6D6F756C696E31393834696D706C656D656E74696E67s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib6E617368313935306261726761696E696E67s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib7061796E65323030386172746966696369616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib70657265733037s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib706F77656C6C3230303973657175656E7469616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib726F6472696775657A3230303973657175656E7469616Cs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib726F73656E7468616C3139383167616D6573s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib727562696E737465696E3139383270657266656374s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib737072756D6F6E7431393933696E7465726D656469617465s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib7765673139393074776Fs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib7765673139393074776Fs1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib77696E746572313939376E65676F74696174696F6E73s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib79616F31393739736F6D65s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib79616F31393739736F6D65s1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib7A6C6F746B696E313939366D656368616E69736Ds1
http://refhub.elsevier.com/S0899-8256(18)30137-4/bib7A6C6F746B696E313939366D656368616E69736Ds1

	Bidding games and efﬁcient allocations
	1 Introduction
	2 Model
	2.1 Bidding games
	2.2 Subgame perfect equilibria

	3 Existence and structure of equilibria
	3.1 Existence of PSPE
	3.2 Genericity and uniqueness
	3.3 The PSPE semilattice

	4 Efﬁciency, monotonicity, and binary trees
	4.1 Binary bidding games
	4.2 Why bottom equilibrium?
	4.3 Low budget resolution

	5 Continuous bids
	6 From bidding games to combinatorial bargaining
	6.1 Sequential scrip bargaining
	6.2 SSBs are binary bidding games
	6.3 Applications for SSB mechanisms
	6.4 Other games

	7 Computational issues
	7.1 Compiling small DAGs from succinct valuations

	8 Discussion and related work
	8.1 Related work
	8.2 Variations
	8.3 Future work

	Acknowledgments
	References


