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Distributed Signaling Games
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A recurring theme in recent computer science literature is that proper design of signaling schemes is a

crucial aspect of effective mechanisms aiming to optimize social welfare or revenue. One of the research

endeavors of this line of work is understanding the algorithmic and computational complexity of designing

efficient signaling schemes. In reality, however, information is typically not held by a central authority, but is

distributed among multiple sources (third-party “mediators”), a fact that dramatically changes the strategic

and combinatorial nature of the signaling problem.

In this paper we introduce distributed signaling games, while using display advertising as a canonical example

for introducing this foundational framework. A distributed signaling game may be a pure coordination game

(i.e., a distributed optimization task), or a non-cooperative game. In the context of pure coordination games,

we show a wide gap between the computational complexity of the centralized and distributed signaling

problems, proving that distributed coordination on revenue-optimal signaling is a much harder problem than

its “centralized” counterpart.

In the context of non-cooperative games, the outcome generated by the mediators’ signals may have

different value to each. The reason for that is typically the desire of the auctioneer to align the incentives of

the mediators with his own by a compensation relative to the marginal benefit from their signals. We design

a mechanism for this problem via a novel application of Shapley’s value, and show that it possesses some

interesting properties; in particular, it always admits a pure Nash equilibrium, and it never decreases the

revenue of the auctioneer (relative to his a priori revenue when there are no mediators).

CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design; Solution
concepts in game theory; Distributed computing methodologies; • Information Systems → World Wide Web;
Online advertising and Applied computing; Electronic Commerce; Online Auctions.
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1 INTRODUCTION
The topic of signaling has recently received much attention in the computer science literature

on mechanism design [3, 5–8, 12]. A recurring theme of this literature is that proper design of a

signaling scheme is crucial for obtaining efficient outcomes, such as social welfare maximization

or revenue maximization. In reality, however, sources of information are typically not held by a

central authority, but are rather distributed among third party mediators/information providers, a

fact which dramatically changes the setup to be studied, making it a game between information

providers rather than a more classic mechanism design problem. Such a game is in the spirit of

work on the theory of teams in economics [15], whose computational complexity remained largely

unexplored. The goal of this paper is to initiate an algorithmic study of such games, which we

term distributed signaling games, via what we view as a canonical example: Bayesian auctions; and
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2 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

more specifically, display advertising in the presence of third party external mediators (information

providers), capturing the (multi-billion) ad exchanges industry.

Consider a web-site owner that auctions each user’s visit to its site, a.k.a. impression. The

impression types are assumed to arrive from a commonly known distribution. The bidders are

advertisers who know that distribution, but only the web site owner knows the impression type

instantiation, consisting of identifiers such as age, origin, gender and salary of the web-site visitor.

As is the practice in existing ad exchanges, we assume the auction is a second price auction. The

web-site owner decides on the information (i.e., signal) about the instantiation to be provided to

the bidders, which then bid their expected valuations for the impression given the information

provided. The selection of the proper signaling by the web-site is a central mechanism design

problem. Assume, for example, an impression associated with two attributes: whether the user

is male or female on one side, and whether he is located in the US or out of the US on the other

side. This gives 4 types of possible users. Assume for simplicity that the probability of arrival of

each user type is 1/4, and that there are four advertisers each one of them has value of $100 for a

distinguished user type and $0 for the other types, where these values are common-knowledge.

One can verify that an auctioneer who reveals no information receives an expected payoff of $25,

an auctioneer who reveals all information gets no payoff, while partitioning the impression types

into two pairs, revealing only the pair of the impression which was materialized (rather than the

exact instantiation) will yield a payoff of $50, which is much higher revenue.

While the above example illustrates some of the potential benefits of signaling and its natural

fit to mechanism design, its major drawback is in the unrealistic manner in which information

is manipulated: while some information about the auctioned item is typically published by the

ad network [20] (such information is modeled here as a public prior), and despite the advertisers’

effort to perform “behavioral targeting" by clever data analysis (e.g., utilizing the browsing history

of a specific user to infer her interests), the quantity of available contextual information and market

expertise is often way beyond the capabilities of both advertisers and auctioneers. This reality

gave rise to “third-party” companies which develop technologies for collecting data and online

statistics used to infer the contexts of auctioned impressions (see, e.g., [16] and references therein).

Consequently, a new distributed ecosystem has emerged, in which many third-party companies

operate within the market aiming at maximizing their own utility (royalties or other compensations),

while significantly increasing the effectiveness of display advertising, as suggested by the following

article recently published by Facebook:

“Many businesses today work with third parties such as Acxiom, Datalogix, and Epsilon
to help manage and understand their marketing efforts. For example, an auto dealer may
want to customize an offer to people who are likely to be in the market for a new car. The
dealer also might want to send offers, like discounts for service, to customers that have
purchased a car from them. To do this, the auto dealer works with a third-party company
to identify and reach those customers with the right offer".
(www.facebook.com, “Advertising and our Third-Party Partners", April 10, 2013.)

Hence, in reality sources of information are distributed. Typically, the information is distributed

among several mediators or information providers/brokers, and is not held (or mostly not held) by

a central authority/web-site owner. In the display advertising example, one information source may

know the gender and another may know the location of the web-site visitor, while the web-site

itself often lacks the capability to track such information. The information sources need to decide

on the communicated information. In this case the information sources become players in a game.

To make the situation clearer, assume (as above) that the value of each impression type for each

bidder is public-knowledge (as is typically the case in repeated interactions through ad exchanges

which share their logs with the participants), and the only unknown entity is the instantiation

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: December 2019.
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Distributed Signaling Games 3

of the impression type; given the information learned from the information sources each bidder

will bid his true expected valuation; hence, the results of this game are determined solely by the

information providers. Notice that if, in the aforementioned example, the information provider

who knows the gender reveals it while the other reveals nothing, then the auctioneer receives

a revenue of $50 as in the centralized case, while the cases in which both information providers

reveal their information or none of them do so result in lower revenues. This shows the subtlety of

the situation.

The above suggests that a major issue to tackle is the study of distributed signaling games, going
beyond the (centralized) realm of classical mechanism design. We use a model of the above display

advertising setting, due to its centrality, as a tool to introduce this novel foundational topic. The

distributed signaling games may be pure coordination games (a.k.a. distributed optimization), or

non-cooperative games. In the context of pure coordination games each information source has

the same utility from the output created by their joint signal. Namely, in the above example if

the web-site owner pays each information source proportionally to the revenue obtained by the

web-site owner then the aims of the information sources are identical. The main aim of the third

parties/mediators is to choose their signals based on their privately observed information in a

distributed manner in order to optimize their own payoffs. Notice that in a typical embodiment,

which we adapt, due to both technical and legal considerations, the auctioneer does not synthesize

reported signals into new ones nor the information providers are allowed to explicitly communicate

among them about the signals, but can only broadcast information they individually gathered. The

study of the computational complexity of this highly fundamental problem is the major technical

challenge tackled in this paper. Interestingly, we show a wide gap between the computational

complexity of the centralized and of the distributed signaling setups, proving that coordinating on

optimal signaling is a much harder problem than the one discussed in the context of centralized

mechanism design. On the other hand we also show a natural restriction on the way information is

distributed among information providers, which allows for an efficient constant approximation

scheme.

In the context of non-cooperative games the outcome generated by the information sources’

reports may result in a different value for each of them. The reason for that is typically the desire of

the auctioneer to align the incentives of the mediators with his own by a compensation relative to

the marginal benefit from their signals. In the above example one may compare the revenue obtained

without the additional information sources, to what is obtained through their help, and compensate

relatively to the Shapley values of their contributions, which is a standard (and rigorously justified)

tool to fully divide a gain yielded by the cooperation of several parties. Here we apply such division

to distributed signaling games, and show that it possesses some interesting properties: in particular

the corresponding game has a pure strategy equilibrium, a property of the Shapley value which

is shown for the first time for signaling settings (and is vastly different from previous studies of

Shapley mechanisms in non-cooperative settings such as cost-sharing games [18]).

1.1 Model
Our model is a generalization of the one defined in [11]. There is a ground set 𝐼 = [𝑛] of potential
items (contexts) to be sold and a set 𝐵 = [𝑘] of bidders. The value of item 𝑗 for bidder 𝑖 is given

as 𝑣𝑖 𝑗 . Following the above discussion (and the previous line of work, e.g., [9, 11]), we assume the

valuation matrix 𝑉 = {𝑣𝑖, 𝑗 } is publicly known. An auctioneer is selling a single random item 𝑗𝑅 ,

distributed according to some publicly known prior distribution 𝜇 over 𝐼 , using a second price

auction (a more detailed description of the auction follows). There is an additional set𝑀 = [𝑚] of
“third-party” mediators. Following standard practice in game theoretic information models [1, 8, 10],

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: December 2019.
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4 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

we assume each mediator 𝑡 ∈ 𝑀 is equipped with a partition (signal-set) P𝑡 ∈ Ω(𝐼 )1. Intuitively,
P𝑡 captures the extra information 𝑡 has about the item which is about to be sold—he knows the

set 𝑆 ∈ P𝑡 to which the item 𝑗𝑅 belongs, but has no further knowledge about which item of 𝑆 it is

(except for the a priori distribution 𝜇)—in other words, the distribution 𝑡 has in mind is 𝜇 |𝑆 . For
example, if the signal-set partition P𝑡 partitions the items of 𝐼 into pairs, then mediator 𝑡 knows to

which pair { 𝑗1, 𝑗2} ∈ P𝑡 the item 𝑗𝑅 belongs, but he has no information whether it is 𝑗1 or 𝑗2, and

therefore, from her point of view, Pr[ 𝑗𝑅 = 𝑗1] = 𝜇 ( 𝑗1)/𝜇 ({ 𝑗1, 𝑗2}).
Mediators can signal some (or all) of the information they own to the network. Formally, this is

represented by allowing each mediator 𝑡 to report any super-partition P ′𝑡 , which is obtained by

merging partitions in her signal-set partition P𝑡 (in other words P𝑡 must be a refinement of P ′𝑡 ).
In other words, a mediator may report any partition P ′𝑡 for which there exists a set Q ′𝑡 ∈ Ω(P𝑡 )
such that P ′𝑡 = {∪𝑆 ∈𝐴𝑆 | 𝐴 ∈ Q ′𝑡 }. In particular, a mediator can always report {𝐼 }, in which

case we say that he “remains silent" since he does not contribute any information. The signals

P ′
1
,P ′

2
, . . . ,P ′𝑚 reported by the mediators are broadcasted2 to the bidders, inducing a combined

partition P ≜ ×𝑚𝑡=1P ′𝑡 = {∩𝑖∈𝑀𝐴𝑖 | 𝐴𝑖 ∈ P ′𝑖 }, which we call the joint partition (or joint signal). P
splits the auction into separate “restricted" auctions: For each bundle 𝑆 ∈ P, the item 𝑗𝑅 belongs to

𝑆 with probability 𝜇 (𝑆) = ∑
𝑗 ∈𝑆 𝜇 ( 𝑗), in which case 𝑆 is signaled to the bidders and a second-price

auction is performed over 𝜇 |𝑆 . Notice that if the signaled bundle is 𝑆 ⊆ 𝐼 , then the (expected) value

of bidder 𝑖 for 𝑗𝑅 ∼ 𝜇 |𝑆 is 𝑣𝑖,𝑆 = 1

𝜇 (𝑆)
∑

𝑗 ∈𝑆 (𝜇 ( 𝑗) · 𝑣𝑖 𝑗 ), and the truthfulness of the second price

auction implies that this will also be bidder 𝑖’s bid for the restricted auction. The winner of the

auction is the bidder with the maximum bid max𝑖∈𝐵 𝑣𝑖,𝑆 , and he is charged the second highest

valuation for that bundle max
(2)
𝑖∈𝐵 𝑣𝑖,𝑆 . Therefore, the auctioneer’s revenue with respect to P is the

expectation (over 𝑆 ∈𝑅 P) of the price paid by the winning bidder:

𝑅(P) =
∑
𝑆 ∈P

𝜇 (𝑆) ·max
(2)
𝑖∈𝐵 (𝑣𝑖,𝑆 ) .

The joint partition P signaled by the mediators can dramatically affect the revenue of the

auctioneer. Consider, for example, the case where 𝑉 is the 4 × 4 identity matrix, 𝜇 is the uniform

distribution, and𝑀 consists of two mediators associated with the partitions P1 = {{1, 2} , {3, 4}}
and P2 = {{1, 3} , {2, 4}}. If both mediators remain silent, the revenue is 𝑅({𝐼 }) = 1/4 (as

this is the average value of all 4 bidders for a random item). However, observe that P1 × P2 =

{{1}, {2}, {3}, {4}}, and the second highest value in every column of𝑉 is 0, thus, if both report their

partitions, the revenue drops to 𝑅(P1 × P2) = 0. Finally, if mediator 1 reports P1, while meditor

2 keeps silent, the revenue increases from 1/4 to 𝑅(P1) = 1/2, as the value of each pair of items

is 1/2 for two different bidders (thus, the second highest price for each pair is 1/2). This example

can be easily generalized to show that in general the intervention of mediators can increase the

revenue by a factor of 𝑛/2 !
Indeed, the purpose of this paper is to understand how mediators’ (distributed) signals affect the

revenue of the auctioneer. We explore the following two aspects of this question:

1
For a set 𝑆 , Ω (𝑆) ≜ {A ⊆ 2

𝑆 | ⋃𝐴∈A 𝐴 = 𝑆, ∀𝐴,𝐵∈A𝐴 ∩ 𝐵 = ∅} is the collection of all partitions of 𝑆 .
2
By saying that a mediator reports P′𝑡 , we mean that he reports the bundle 𝑆 ∈ P′𝑡 for which 𝑗𝑅 ∈ 𝑆 . The reader may

wonder why our model is a broadcast model, and does not allow the mediators to report their information to the auctioneer

through private channels, in which case the ad network will be able to manipulate and publish whichever information that

best serves its interest. The primary reason for the broadcast assumption is that online advertising is a highly dynamic

marketplace in which mediators often “come and go”, so implementing “private contracts” is infeasible. The second reason

is that real-time bidding environments cannot afford the latency incurred by such a two-phase procedure in which the

auctioneer first collects the information, and then selectively publishes it. The auction process is usually treated as a “black

box", and modifying it harms the modularity of the system.
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Distributed Signaling Games 5

(1) (Computational) Suppose the auctioneer has control over the signals reported by the media-

tors. We study the computational complexity of the following problem. Given a 𝑘 × 𝑛 matrix
𝑉 of valuations and mediators’ partitions P1,P2, . . . ,P𝑚 , what is the revenue maximizing joint
partition P = P ′

1
× . . . × P ′𝑚? We call this problem the Distributed Signaling Problem, and

denote it by DSP(𝑛, 𝑘,𝑚).
We note that the problem studied in [11] is a special case of DSP, in which there is a single
mediator (𝑚 = 1) with perfect knowledge about the item sold and can report any desirable

signal (partition).
3

(2) (Strategic) What if the auctioneer cannot control the signals reported by the mediators (as

the reality of the problem usually entails)? Can the auctioneer introduce compensations that
will incentivize mediators to report signals leading to increased revenue in the auction, when
each mediator is acting selfishly?
This is a mechanism design problem: Here the auctioneer’s goal is to design a payment rule

(i.e., a mechanism) for allocating (part of) his profit from the auction among the mediators,

based on their reported signals and the auction’s outcome, so that global efficiency (i.e.,

maximum revenue) emerges from their signals.

Section 1.2 summarizes our findings regarding the two above problems.

1.2 Our Results
Ghosh et al. [11] showed that computing the revenue-maximizing signal in their “perfect-knowledge”

setup is 𝑁𝑃-hard, but present an efficient algorithm for computing a 2-approximation of the optimal

signal (partition). We show that when information is distributed, the problem becomes much harder.

More specifically, we present a gap-preserving reduction from the Maximum Independent Set
problem to DSP.

Theorem 1.1 (Hardness of approximatingDSP). If there exists an𝑂 (𝑚1/2−𝜀) approximation (for
some constant 𝜀 > 0) for instances of DSP(2𝑚,𝑚 + 1,𝑚), then there exists an𝑂 (𝑁 1−2𝜀) approximation
for Maximum Independent Set (MIS𝑁 ), where 𝑁 is the number of nodes in the underlying graph of the
MIS instance.

Since the Maximum Independent Set problem is NP-hard to approximate to within a factor of

𝑛1−𝜌 for any fixed 𝜌 > 0 [13], Theorem 1.1 indicates that approximating the revenue-maximizing

signal, even within a multiplicative factor of 𝑂 ((min{𝑛, 𝑘,𝑚})1/2−𝜀), is NP-hard. In other words,

one cannot expect a reasonable approximation ratio for DSP(𝑛, 𝑘,𝑚) when the three parameters

of the problem are all “large”. The next theorem shows that a “small” value for either one of the

parameters 𝑛 or 𝑘 indeed implies a better approximation ratio.

Theorem 1.2 (Approximation algorithm for small 𝑛 or 𝑘). For 𝑘 ≥ 2, there is a polynomial
time min{𝑛, 𝑘 − 1}-approximation algorithm for DSP(𝑛, 𝑘,𝑚).4

We leave open the problem of determining whether one can get an improved approximation

ratio when the parameter 𝑚 is “small”. For 𝑚 = 1, the result of [11] implies immediately a 2-

approximation algorithm. However, even for the case of𝑚 = 2 we are unable to find an algorithm

having a non-trivial approximation ratio. We mitigate the above results by proving that for a natural

(and realistic) class of mediators called local experts (defined in Section 3), there exists a polynomial

time 5-approximation algorithm for DSP.

3
In other words, P1 is the partition of 𝐼 into singletons.

4
For 𝑘 = 1, any algorithm is optimal since the use of a second price auction implies that the revenue of any strategy profile

is 0 when there is only one bidder.
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6 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

Theorem 1.3 (A 5-approximation algorithm for Local Expert mediators). If mediators are
local experts, there exists a polynomial time 5-approximation algorithm for DSP.

In the strategic setup, we design a fair (symmetric) payment rule S : (P ′
1
,P ′

2
, ...,P ′𝑚) → R𝑚+

for incentivizing mediators to report useful information they own, and refrain from reporting

information with negative impact on the revenue. This mechanism is inspired by the Shapley Value—
it distributes part of the auctioneer’s surplus among the mediators according to their expected

relative marginal contribution to the revenue, when ordered randomly.
5
We first show that this

mechanism always admits a pure Nash equilibrium, a property we discovered to hold for arbitrary

games where the value of the game is distributed among players according to Shapley’s value

function.

Theorem 1.4. Let G𝑚 be a non-cooperative𝑚-player game in which the payoff of each player is
set according to S. Then G𝑚 admits a pure Nash equilibrium. Moreover, best response dynamics are
guaranteed to converge to such an equilibrium.

We then turn to analyze the revenue guarantees of our mechanism S. Our first theorem shows

that using the mechanism S never decreases the revenue of the auctioneer compared to the initial

state (i.e., when all mediators are silent).

Theorem 1.5. For every Nash equilibrium (P ′
1
,P ′

2
, . . . ,P ′𝑚) of S, 𝑅(×𝑡 ∈𝑀P ′𝑡 ) ≥ 𝑅({𝐼 }).

The next two theorems provide tight bounds on the price of anarchy and price of stability of S.6
Unlike in the computational setup, even restricting the mediators to be local experts does not enable

us to get improved results here.

Theorem 1.6. For 𝑘 ≥ 2, the price of anarchy of S under any instance DSP(𝑛, 𝑘,𝑚) is no more
than min{𝑘 − 1, 𝑛}.

Theorem 1.7. For every 𝑛 ≥ 1, there is a DSP(3𝑛 + 1, 𝑛 + 2, 2) instance for which the price of
stability of S is at least 𝑛. Moreover, all the mediators in this instance are local experts.

Interestingly, an adaptation of Shapley’s uniqueness theorem [19] to our non-cooperative setting

asserts that the price of anarchy of our mechanism is inevitable if one insists on a few natu-

ral requirements—essentially anonymity and efficiency
7
of the payment rule—and assuming the

auctioneer alone can introduce payments. We discuss this further in Section 4.3.

1.3 Additional Related Work
The formal study of internet auctions with contexts was introduced by [9] where the authors studied

the impact of contexts in the related Sponsored Search model, and showed that bundling contexts
may have a significant impact on the revenue of the auctioneer. The subsequent work of Ghosh et.

al. [11] considered the computational algorithmic problem of computing the revenue maximizing

partition of items into bundles, under a second price auction in the full information setting. Recently,

Emek et al. [8] and Bro Miltersen and Sheffet [3] studied signaling (which generalizes bundling)

in the context of display advertising. They explore the computational complexity of computing

5
Shapley’s value was originally introduced in the context of cooperative games, where there is a well defined notion of a

coalition’s value. In order to apply this notation to a non-cooperative game, we assume the game has some underlying

global function (𝑣 ( ·)) assigning a value to every strategy profile of the players, and the Shapley value of each player is

defined with respect to 𝑣 ( ·) . In this setting, a “central planner" (the auctioneer in our case) is the one making the utility

transfer to the “coalised" players. For the formal axiomatic definition of a value function and Shapley’s value function, see

[19].

6
The price of anarchy (stability) is the ratio between the revenue of the optimum and the worst (best) Nash equilibrium.

7
I.e., the sum of payments is equal to the total surplus of the auctioneer.
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a signaling scheme that maximizes the auctioneer’s revenue in a Bayesian setting. On the other

hand, Guo and Deligkas [12] studied a special case of bundling where only “natural” bundles are

allowed. Unlike our distributed setup, all the above models are centralized, in the sense that the

auctioneer has full control over the bundling process (which in our terms corresponds to having a

single mediator with a perfect knowledge about the item sold).

A different model with knowledgeable third parties was recently considered by Cavallo et al. [4].

However, the focus of this model is completely different then ours. More specifically, third parties

in this model use their information to estimate the clicks-per-impression ratio, and then use this

estimate to bridge between advertisers who would like to pay-by-click and ad networks which use

a pay-by-impression payment scheme.

The proof of Theorem 1.4 is based on the existence of a potential function for our mechanism

S. There has been work showing that Shapley-based mechanism possesses a potential function

in other contexts as well. In particular, such mechanisms apply to resource-selection forms (see,

e.g., [14, 17]). Moreover, [17] shows a general class of resource selection games, such that a local

condition on cost/welfare distribution per resource must be according to the Shapley value in

order to yield a potential function. However, unlike in our work and in a recent work in Machine

Learning [2], the above refer to local conditions on the distribution of gain/cost of a given resource,

rather than the evaluation of an individual’s informational contribution. The work in [2] decides

on a content to be shown based on its relative informational quality, when the exact probability of

showing a content depends on its Shapley value in a cooperative game, while in our setting we

decide on monetary compensation based on marginal informational contribution as described by a

Shapley-based mechanism. These three genres of work point to the importance of Shapley-based

mechanisms. It seems, though, that finding formal connections between them is not immediate,

and may be a subject for future study.

2 PRELIMINARIES
Throughout the paper we use capital letters for sets and calligraphic letters for set families. For

example, the partition P𝑡 representing the knowledge of mediator 𝑡 is a set of sets, and therefore,

should indeed be calligraphic according to this notation. A mechanismM is a tuple of payment

functions (Π1,Π2, . . . ,Π𝑚) determining the compensation of every mediator given a strategy profile

(i.e., Π𝑡 : Ω(P1) ×Ω(P2) × . . .×Ω(P𝑚) −→ R+). Every mechanismM induces the following game

between mediators.

Definition 2.1 (DSP game). Given a mechanismM = (Π1,Π2, . . . ,Π𝑚) and a DSP(𝑛, 𝑘,𝑚) in-
stance, the DSPM (𝑛, 𝑘,𝑚) game is defined as follows. Every mediator 𝑡 ∈ 𝑀 is a player whose

strategy space consists of all partitions P ′𝑡 for which P𝑡 is a refinement. Given a strategy profile

P ′
1
,P ′

2
, . . . ,P ′𝑚 , the payoff of mediator 𝑡 is Π𝑡 (P ′1,P ′2, . . . ,P ′𝑚).

Given a DSP instance and a set 𝑆 ⊆ 𝐼 , we use the shorthand 𝑣 (𝑆) := max
(2)
𝑖∈𝐵 (𝑣𝑖,𝑆 ) to denote the

second highest bid in the restricted auction 𝜇 |𝑆 . Using this notation, the expected revenue 𝑅(P) of
the auctioneer under the (joint) partition P of the mediators can be restated as

𝑅(P) =
∑
𝑆 ∈P

𝜇 (𝑆) · 𝑣 (𝑆) .

For a DSPM game, let E(M) denote the set of Nash equilibria of this game and let P∗ be a
maximum revenue strategy profile. The Price of Anarchy and Price of Stability of DSPM are defined

as:

PoA := max

P∈E(M)

𝑅(P∗)
𝑅(P) , and PoS := min

P∈E(M)

𝑅(P∗)
𝑅(P) ,

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: December 2019.
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respectively. Notice that our definition of the price of anarchy and price of stability differs from the

standard one by using revenue instead of social welfare.

3 THE COMPUTATIONAL COMPLEXITY OF DISTRIBUTED SIGNALING (DSP)
This section explores DSP from a pure combinatorial optimization viewpoint. In other words, we

assume the auctioneer can control the signals produced by each mediator. The objective of the

auctioneer is then to choose a distributed strategy profile P ′
1
,P ′

2
, . . . ,P ′𝑚 whose combination ×𝑡P ′𝑡

yields maximum revenue in the resulting auction. We begin with negative results (proving Theorem

1.1 in Subsection 3.1), and then proceed with a few approximation algorithms for the problem

(Subsection 3.2), including a 5-approximation algorithm for the case of local expert mediators

(Theorem 1.3).

3.1 Hardness of Approximating DSP
It is not hard to show that solving DSP exactly, i.e., finding the maximum revenue strategy profile,

is NP-hard. In fact, this statement directly follows from the NP-hardness result of [11] by observing

that the special case of a single mediator with perfect knowledge (P1 = {{ 𝑗} | 𝑗 ∈ 𝐼 }) is equivalent
to the centralized signaling model of [11].

Proposition 3.1. Solving DSP exactly is NP-Hard.

The main result of this section is that approximating the revenue-maximizing signals, even

within a multiplicative factor of 𝑂 ((min{𝑛, 𝑘,𝑚})1/2−𝜀), remains NP-hard. This result is achieved

by a gap preserving reduction from Maximum Independent Set to DSP.

Theorem 3.2. For every integer ℓ ≥ 1, an 𝛼 ≥ 1 approximation for DSP(2ℓ𝑁 , ℓ𝑁 + 1, ℓ𝑁 ) induces
a 𝛼 (1+ ℓ−1 (𝑁 + 1)) approximation for the Maximum Independent Set problem (where 𝑁 is the number
of nodes in the graph).

Observe that Theorem 1.1 follows easy from Theorem 3.2.

Theorem 1.1. If there exists an𝑂 (𝑚1/2−𝜀) approximation (for some constant 𝜀 > 0) for instances of
DSP(2𝑚,𝑚 +1,𝑚), then there exists a𝑂 (𝑁 1−2𝜀) approximation for Maximum Independent Set (MIS𝑁 ),
where 𝑁 is the number of nodes in the underlying graph of the MIS instance.

Proof. Let ℓ = 𝑁 + 1. By Theorem 3.2, there exists an approximation algorithm for Maximum

Independent Set whose approximation ratio is 2𝛼 , where 𝛼 is the approximation ratio that can be

achieved for instances of DSP(2ℓ𝑁 , ℓ𝑁 + 1, ℓ𝑁 ). On the other hand, by our assumption:

𝛼 = 𝑂 ((ℓ𝑁 )1/2−𝜀) = 𝑂 (𝑁 2(1/2−𝜀) ) = 𝑂 (𝑁 1−2𝜀) ,
which completes the proof. □

In the rest of this section we prove Theorem 3.2. The high-level idea of the reduction is as follows.

Given a graph𝐺 = (𝑉 , 𝐸), we map it to aDSP instance by associating ℓ pairs of (equi-probable) items

{( 𝑗𝑣,𝑘 , 𝑗 ′𝑣,𝑘 )}
ℓ
𝑘=1

with each node of the graph 𝑣 ∈ 𝑉 , where the items 𝑗 ′
𝑣,𝑘

are auxiliary items called

the “helper items" of node 𝑣 . Additionally, for each node we have ℓ single-minded bidders, each of

which is interested (exclusively) in a specific item 𝑗𝑣,𝑘 . An additional bidder (𝑖ℎ) is interested in all
helper-items of all nodes. Finally, each node 𝑣 ∈ 𝑉 has a corresponding set of ℓ mediators {𝑚𝑣,𝑘 }ℓ𝑘=1
(one for each items pair). Each mediator𝑚𝑣,𝑘 has a single bit of information, corresponding to

whether or not the auctioned item belongs to the union set of the 𝑘-th pair ( 𝑗𝑣,𝑘 , 𝑗 ′𝑣,𝑘 ) together with
all helper elements of the neighbor nodes of 𝑣 .
As the helper elements are valuable only to a single bidder 𝑖ℎ , a part in a partition can have a

non-zero contribution to the revenue only if it contains at least two non-helper elements or at

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: December 2019.
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Distributed Signaling Games 9

least one helper element and at least one non-helper element. However, our construction ensures

that, whenever a strategy profile P involves at least two “active" mediators of neighboring nodes
(𝑢, 𝑣) ∈ 𝐸, the resulting joint partition isolates the non-helper elements of 𝑢 from helper elements
(except for maybe one part that might contain elements of both types). Thus, in a high revenue

strategy profile the set of nodes associated with many “speaking" (active) mediators must be close

to an independent set (see Figure 1 for an illustration).

We now proceed with the formal proof. Given a graph 𝐺 = (𝑉 , 𝐸) of 𝑁 nodes, consider an

instance of DSP consisting of the following:

• A set { 𝑗𝑣,𝑘 , 𝑗 ′𝑣,𝑘 | 𝑣 ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ} of 2ℓ𝑁 items having equal probabilities to appear. For

every node 𝑣 and integer 1 ≤ 𝑘 ≤ ℓ , the element 𝑗 ′
𝑣,𝑘

is referred to as the “helper” item

of 𝑗𝑣,𝑘 . For notational convenience, we define the following sets for every node 𝑣 ∈ 𝑉 :

𝐽𝑣 = { 𝑗𝑣,𝑘 | 1 ≤ 𝑘 ≤ ℓ} and 𝐻𝑣 = { 𝑗 ′𝑣,𝑘 | 1 ≤ 𝑘 ≤ ℓ}.
• A set {𝑖𝑣,𝑘 , | 𝑣 ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ}∪{𝑖ℎ} of ℓ𝑁 +1 bidders. For every node 𝑣 and integer 1 ≤ 𝑘 ≤ ℓ ,

the bidder 𝑖𝑣,𝑘 has a value of 2ℓ𝑁 for the item 𝑗𝑣,𝑘 and a value of 0 for all other item. The

remaining bidder 𝑖ℎ has a value of 2ℓ𝑁 for each helper item (i.e., each item from the set

{ 𝑗 ′
𝑣,𝑘
| 𝑣 ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ}) and a value of 0 for the non-helper item.

• There are ℓ𝑁 mediators {𝑚𝑣,𝑘 , | 𝑣 ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ}. For every node 𝑣 and integer 1 ≤ 𝑘 ≤ ℓ

the partition of mediator𝑚𝑣,𝑘 is defined as follows:

P𝑣,𝑘 =

{ 𝑗𝑣,𝑘 , 𝑗 ′𝑣,𝑘 } ∪
⋃

𝑢 |𝑢𝑣∈𝐸
𝐻𝑢

 ∪ {𝑅𝑣} ,

where 𝑅𝑣 is the set of remaining elements that do not belong to the first part of the partition.

Informally, P𝑣,𝑘 is a binary partition where on one side we have the two elements 𝑗𝑣,𝑘 and

𝑗 ′
𝑣,𝑘

and all the helper elements corresponding to neighbor nodes of 𝑣 , and on the other side

we have the rest of the elements (we illustrate this construction in Figure 1).

Let us begin the analysis of the above DSP instance by determining the contribution of each part

in an arbitrary partition P to 𝑅(P).

Claim 3.3. Let P be an arbitrary partition. Then, for every part 𝑆 ∈ P, the contribution of 𝑆 to
𝑅(P) is 0, unless |𝑆 | ≥ 2 and 𝑆 contains at least one non-helper item. In the last case, the contribution
of 𝑆 to the total revenue is:

𝜇 (𝑆) · 𝑣 (𝑆) = 1 .

Proof. There are a few cases to consider.

• If 𝑆 contains only helper elements, then it is valuable only to 𝑖ℎ , and thus, has a 0 contribution

to 𝑅(P).
• If 𝑆 contains only one element, then it is valuable only to one bidder because each element is

valuable only to one element. Thus, it again contributes 0 to 𝑅(P).
• If 𝑆 contains multiple elements, at least one of which is non-helper, then it is valuable to at

least two bidders. Specifically, for every element 𝑗𝑣,𝑘 ∈ 𝑆 , 𝑣𝑖𝑣,𝑘 ,𝑆 = 2ℓ𝑁 /|𝑆 |. Additionally, if
there are helper elements in 𝑆 , then:

𝑣𝑖ℎ,𝑆 =
2ℓ𝑁 · |𝑆 ∩ { 𝑗 ′

𝑣,𝑘
| 𝑣 ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ}|
|𝑆 | ≥ 2ℓ𝑁

|𝑆 | .

Hence, for any such part 𝑆 we get 𝑣 (𝑆) = max
(2)
𝑖∈𝐵 𝑣𝑖,𝑆 = 2ℓ𝑁 /|𝑆 |, and the contribution of the

part to 𝑅(P) is 𝜇 (𝑆) · 𝑣 (𝑆) = 1. □
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10 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

Fig. 1. A simplified graphical illustration of the reduction. The blue lines represent edges in the original graph
𝐺 . The black (gray) circles represent a single one out of the ℓ non-helper (helper) items of each node. The two
polygons represent the partition sets of mediators𝑚𝑢,1,𝑚𝑣,1, corresponding to the (neighboring) nodes 𝑢, 𝑣 ,
respectively. If both mediators speak, the resulting joint partition isolates the non-helper element(s) of 𝑢 from
each from helper elements, as evident by the intersection region of both polygons. Notice that, for each node
𝑥 in the graph, the partition of each mediator𝑚𝑥,𝑘 includes all neighboring non-helper items, across all ℓ
copies, but only the 𝑘’th copy of the non-helper item of node 𝑥 (this feature is missing from the figure for
simplicity, but is crucial for the analysis).

Let𝐴 be an arbitrary independent set of𝐺 , and let 𝑆𝐴 := {𝑚𝑣,𝑘 | 𝑣 ∈ 𝐴, 1 ≤ 𝑘 ≤ ℓ}. The following
claim lower bounds the revenue of the joint partition arising when the mediators of 𝑆𝐴 are the only

speaking mediators.

Claim 3.4. 𝑅(×𝑚𝑣,𝑘 ∈𝑆𝐴P𝑣,𝑘 ) ≥ |𝑆𝐴 | = ℓ · |𝐴|.
Proof. Observe that P𝑣,𝑘 separates 𝑗𝑣,𝑘 from every other item of the set { 𝑗𝑣,𝑘 | 𝑣 ∈ 𝑉 , 1 ≤ 𝑘 ≤ ℓ}.

Hence, ×𝑚𝑣,𝑘 ∈𝑆𝐴P𝑣,𝑘 contains |𝑆𝐴 | different parts {𝑇𝑣,𝑘 | 𝑚𝑣,𝑘 ∈ 𝑆𝐴}, where each part 𝑇𝑣,𝑘 contains

𝑗𝑣,𝑘 . On the other hand, each pair ( 𝑗𝑣,𝑘 , 𝑗 ′𝑣,𝑘 ) of items is separated only by the partitions of mediators

corresponding to neighbors of 𝑣 . Since 𝐴 is independent, this implies that 𝑗𝑣,𝑘 and 𝑗 ′
𝑣,𝑘

share part

in ×𝑚𝑣,𝑘 ∈𝑆𝐴P𝑣,𝑘 for every mediator𝑚𝑣,𝑘 ∈ 𝑆𝐴. In other words, for every𝑚𝑣,𝑘 ∈ 𝑆𝐴, the part 𝑇𝑣,𝑘
contains 𝑗 ′

𝑣,𝑘
in addition to 𝑗𝑣,𝑘 , and thus by Claim 3.3, contributes 1 to 𝑅(×𝑚𝑣,𝑘 ∈𝑆𝐴P𝑣,𝑘 ). Therefore,

𝑅(×𝑚𝑣,𝑘 ∈𝑆𝐴P𝑣,𝑘 ) ≥ |𝑆𝐴 | = ℓ · |𝐴|, as claimed. □

Claim 3.4 asserts that there exists a solution for the above DSP instance whose value is at least

ℓ ·𝑂𝑃𝑇 , where 𝑂𝑃𝑇 is the size of the maximum independent set in 𝐺 .

Consider now an arbitrary set 𝑆 of mediators, and let 𝑆 ′ = {𝑚𝑣,𝑘 ∈ 𝑆 | ∀𝑚𝑢,𝑘′ ∈𝑆 𝑢𝑣 ∉ 𝐸}. Informally,

a mediator𝑚𝑣,𝑘 is in 𝑆 ′ if it belongs to 𝑆 and no neighbor node 𝑢 of 𝑣 has a mediator in 𝑆 . The

following lemma upper bounds in terms of |𝑆 ′ | the revenue of the joint partition of the mediators

in 𝑆 .

Lemma 3.5. 𝑅(×𝑚𝑣,𝑘 ∈𝑆P𝑣,𝑘 ) ≤ |𝑆 ′ | + 𝑁 + 1.
Proof. Each partition P𝑣,𝑘 separates a single non-helper element 𝑗𝑣,𝑘 from the other non-helper

elements. Hence, ×𝑚𝑣,𝑘 ∈𝑆P𝑣,𝑘 consists of at most |𝑆 | + 1 parts containing non-helper elements

(recall that parts with only helper elements have 0 contribution to 𝑅(×𝑚𝑣,𝑘 ∈𝑆P𝑣,𝑘 ), and thus, can

be ignored). Let us label these parts {𝑇𝑣,𝑘 }𝑚𝑣,𝑘 ∈𝑆 ,𝑇 , where 𝑇𝑣,𝑘 is the part containing 𝑗𝑣,𝑘 for every

𝑚𝑣,𝑘 ∈ 𝑆 and 𝑇 is the part containing the remaining non-helper elements. Let us upper bound the

contribution of each such part to 𝑅(×𝑢∈𝑆P𝑢).

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: December 2019.
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Distributed Signaling Games 11

ALGORITHM 1: Independent Set Algorithm

1 Construct a DSP instance from the independent set instance as described above.

2 Run the 𝛼-approximation algorithm for DSP assumed by Theorem 3.2 on the constructed instance, and

let 𝑆 be the set of mediators speaking in the obtained strategy profile.

3 Calculate the configuration 𝑆 ′ = {𝑚𝑣,𝑘 ∈ 𝑆 | ∀𝑚𝑢,𝑘′ ∈𝑆 𝑢𝑣 ∉ 𝐸}.
4 Calculate the independent set 𝐴′ = {𝑣 ∈ 𝑉 | ∃

1≤𝑘≤ℓ𝑚𝑣,𝑘 ∈ 𝑆 ′}.
5 If 𝐴′ is non-empty output it, otherwise output an arbitrary single node.

• The part 𝑇 and all the parts {𝑇𝑣,𝑘 }𝑚𝑣,𝑘 ∈𝑆′ can contribute at most 1 each because no part has a

larger contribution.

• Consider a part 𝑇𝑣,𝑘 obeying𝑚𝑣,𝑘 ∈ 𝑆 \ 𝑆 ′ and |𝐽𝑣 ∩ 𝑆 | = 1 (i.e.,𝑚𝑣,𝑘 is the only mediator of 𝑣

belonging to 𝑆). This part also contribute at most 1, but there can be at most 𝑁 such parts,

one for every node.

• Finally, consider a part 𝑇𝑣,𝑘 obeying𝑚𝑣,𝑘 ∈ 𝑆 \ 𝑆 ′ and |𝐽𝑣 ∩ 𝑆 | ≥ 2 (i.e., at least two mediators

of 𝑣 belong to 𝑆). By the construction of P𝑣,𝑘 , 𝑇𝑣,𝑘 can contain in addition to 𝑗𝑣,𝑘 only the

corresponding helper element 𝑗 ′
𝑣,𝑘

and helper elements from

⋃
𝑢 |𝑢𝑣∈𝐸 𝐻𝑢 . Let us see why none

of these helper elements actually belongs to 𝑇𝑣,𝑘 , and thus, the part 𝑇𝑣 contains only 𝑗𝑣,𝑘 and

contributes 0.

– Since𝑚𝑣,𝑘 ∉ 𝑆 ′, there exists a neighbor node 𝑣 ′ of 𝑣 having a mediator𝑚𝑣′,𝑘′ ∈ 𝑆 . Then, the
partition P𝑣′,𝑘′ separates 𝑗 ′𝑣,𝑘 from 𝑗𝑣,𝑘 and guarantees that 𝑗 ′

𝑣,𝑘
∉ 𝑇𝑣,𝑘 .

– Let𝑚𝑣,𝑘′ be another mediator in 𝐽𝑣 ∩ 𝑆 (exists since |𝐽𝑣 ∩ 𝑆 | ≥ 2). Then, the partition P𝑣,𝑘′
separates the helper elements of

⋃
𝑢 |𝑢𝑣∈𝐸 𝐻𝑢 from 𝑗𝑣,𝑘 and guarantees that none of these

helper mediators belongs to 𝑇𝑣,𝑘 .

In conclusion: 𝑅(×𝑚𝑣,𝑘 ∈𝑆P𝑣,𝑘 ) ≤ |𝑆 ′ | + 𝑁 + 1, as claimed. □

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Consider Algorithm 1. We would like to show that this algorithm is an

𝛼 (1+ℓ−1 (𝑁+1))-approximation algorithm forMaximum Independent Set, which proves the theorem.

The DSP instance constructed by Algorithm 1 has a strategy profile of revenue at least ℓ ·𝑂𝑃𝑇 by

Claim 3.4. Since 𝑆 is obtained using an 𝛼-approximation algorithm, 𝑅(×𝑚𝑣,𝑘 ∈𝑆P𝑣,𝑘 ) ≥ ℓ ·𝑂𝑃𝑇 /𝛼
(recall that all mediators have binary partitions, and thus, they must report their partitions as is

when they speak). By Lemma 3.5 we now get:

|𝑆 ′ | ≥ 𝑅(×𝑚𝑣,𝑘 ∈𝑆P𝑣,𝑘 ) − (𝑁 + 1) ≥ ℓ ·𝑂𝑃𝑇 /𝛼 − (𝑁 + 1) .

Informally, 𝐴′ is the set of nodes having mediators in 𝑆 ′. The independence of 𝐴′ follows from
the construction of 𝑆 ′, which guarantees that Algorithm 1 outputs an independent set. Additionally,

since each node has ℓ mediators:

|𝐴′ | ≥ |𝑆
′ |
ℓ
≥ ℓ ·𝑂𝑃𝑇 /𝛼 − (𝑁 + 1)

ℓ
=
𝑂𝑃𝑇

𝛼
− 𝑁 + 1

ℓ
.
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12 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

If 𝑂𝑃𝑇 ≥ 𝛼 (1 + ℓ−1 (𝑁 + 1)), then:

|𝐴′ | ≥ 𝑂𝑃𝑇

𝛼
− 𝑁 + 1

ℓ

=
𝑂𝑃𝑇

𝛼 (1 + ℓ−1 (𝑁 + 1)) +
[1 − (1 + ℓ−1 (𝑁 + 1))−1] ·𝑂𝑃𝑇

𝛼
− 𝑁 + 1

ℓ

≥ 𝑂𝑃𝑇

𝛼 (1 + ℓ−1 (𝑁 + 1)) .

On the other hand, if 𝑂𝑃𝑇 ≤ 𝛼 (1 + ℓ−1 (𝑁 + 1)), then the solution of Algorithm 1 is of size at least

𝑂𝑃𝑇
𝛼 (1+ℓ−1 (𝑁+1)) simply because it is not empty. □

3.2 Approximation Algorithms for DSP
In light of Theorem 1.1, an efficient algorithmwith a reasonable approximation guarantee for general

DSP is unlikely to exist when the three parameters of the problem are all “large”. Subsection 3.2.1

gives a trivial algorithm which has a good approximation guarantee when either 𝑛 or 𝑘 is small. A

more interesting result is given in Subsection 3.2.2, which proves a 5-approximation algorithm for

DSP under the assumption that the mediators are local experts (as stated in Theorem 1.3).

3.2.1 A simple min{𝑛, 𝑘 − 1}-approximation algorithm for DSP. In this section we prove the fol-

lowing theorem:

Theorem 1.2. For 𝑘 ≥ 2, there is a polynomial time min{𝑛, 𝑘 − 1}-approximation algorithm for
DSP(𝑛, 𝑘,𝑚).

Proof. We show that the algorithm that simply returns the partition {𝐼 }, the joint partition
corresponding to the case where all mediators are silent, has the promised approximation guarantee.

For that purpose we analyze the revenue of {𝐼 } in two different ways:

• Let P ′ = (P ′
1
,P ′

2
, . . . ,P ′𝑚) be an arbitrary strategy profile of the instance in question. The

revenue of P ′ is:
𝑅(×𝑚𝑡=1P ′𝑡 ) =

∑
𝑆 ∈×𝑚

𝑡=1
P′𝑡

𝜇 (𝑆) · 𝑣 (𝑆) ≤ | ×𝑚𝑡=1 P ′𝑡 | · max

𝑆 ∈×𝑚
𝑡=1
P′𝑡
𝜇 (𝑆) · 𝑣 (𝑆)

≤ 𝑛 · max

𝑆 ∈×𝑚
𝑡=1
P′𝑡
𝜇 (𝑆) · 𝑣 (𝑆) ≤ 𝑛 · 𝑅({𝐼 }) ,

where the last inequality holds since, for every set 𝑆 , 𝑅({𝐼 }) = 𝑣 (𝐼 ) ≥ 𝑣 (𝑆) · 𝜇 (𝑆). This shows
that the approximation ratio of the trivial strategy profile {𝐼 } provides an 𝑛-approximation

to the optimal revenue.

• Let P ′ = (P ′
1
,P ′

2
, . . . ,P ′𝑚) be an arbitrary strategy profile of the instance in question. The

revenue of P ′ is:

𝑅(×𝑚𝑡=1P ′𝑡 ) =
∑

𝑆 ∈×𝑚
𝑡=1
P′𝑡

𝜇 (𝑆) · 𝑣 (𝑆) =
∑

𝑆 ∈×𝑚
𝑡=1
P′𝑡

𝜇 (𝑆) ·
(
max

(2)
𝑖∈𝐵

∑
𝑗 ∈𝑆 𝜇 ( 𝑗) · 𝑣𝑖, 𝑗

𝜇 (𝑆)

)
=

∑
𝑆 ∈×𝑚

𝑡=1
P′𝑡

(
max

(2)
𝑖∈𝐵

∑
𝑗 ∈𝑆

𝜇 ( 𝑗) · 𝑣𝑖, 𝑗

)
.

For every bidder 𝑖 ∈ 𝐵, let Σ𝑖 =
∑

𝑗 ∈𝐼 𝜇 ( 𝑗) · 𝑣𝑖 𝑗 . It is easy to see that 𝑣 (𝐼 ) = max
(2)
𝑖∈𝐵 Σ𝑖 (in

other words, the second highest Σ𝑖 value is 𝑣 (𝐼 )). Let 𝑖∗ ∈ 𝐵 be the index maximizing Σ𝑖∗
(breaking ties arbitrary). Consider a set 𝑆 ∈ ×𝑚𝑡=1P ′𝑡 . The elements of 𝑆 contribute at least

max
(2)
𝑖∈𝐵

∑
𝑗 ∈𝑆 𝜇 ( 𝑗) · 𝑣𝑖, 𝑗 to at least two of the values: Σ1, . . . , Σ𝑛 . Thus, they contribute at
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least the same quantity to the sum

∑
𝑖∈𝐵\{𝑖∗ } Σ𝑖 . This means that at least one of the values

{Σ𝑖 }𝑖∈𝐵\{𝑖∗ } must be at least:∑
𝑆 ∈×𝑚

𝑡=1
P′𝑡

(
max

(2)
𝑖∈𝐵

∑
𝑗 ∈𝑆 𝜇 ( 𝑗) · 𝑣𝑖, 𝑗

)
𝑘 − 1 =

𝑅(×𝑚𝑡=1P ′𝑡 )
𝑘 − 1 .

By definition Σ𝑖∗ must also be at least that large, and therefore,

𝑅({𝐼 }) = 𝑣 (𝐼 ) ≥ 𝑅(×𝑚𝑡=1P ′𝑡 )/(𝑘 − 1). □

3.2.2 A 5-approximation algorithm for local expert mediators. In this subsection we consider an

interesting special case ofDSPwhich is henceforth shown to admit a constant factor approximation.

Definition 3.6 (Local Expert mediators). A mediator 𝑡 in a DSP instance is a local expert if there
exists a set 𝐼𝑡 ⊆ 𝐼 such that: P𝑡 = {{ 𝑗} | 𝑗 ∈ 𝐼𝑡 } ∪ {𝐼 \ 𝐼𝑡 }.

Informally, a local expert mediator has perfect knowledge about a single set 𝐼𝑡—if the item

belongs to 𝐼𝑡 , he can tell exactly which item it is. In other words, a local expert mediator specializes

in some kind of items to the extent that it knows everything about this kind of items, and nothing

at all about other kinds of items. Our objective in the rest of the section is to prove Theorem 1.3,

i.e., to describe a 5-approximation algorithm for instances of DSP consisting of only local expert

mediators.

We begin the proof with an upper bound on the revenue of the optimal joint strategy, which we

denote by P∗. To describe this bound, we need some notation. We use 𝐼 to denote the set of items

that are within the expertise domain of some mediator (formally, 𝐼 =
⋃

𝑡 ∈𝑀 𝐼𝑡 ). Additionally, for

every item 𝑗 ∈ 𝐼 , ℎ 𝑗 and 𝑠 𝑗 denote 𝜇 ( 𝑗) times the largest value and second largest value, respectively,

of 𝑗 for any bidder (more formally, ℎ 𝑗 = 𝜇 ( 𝑗) ·max𝑖∈𝐵 𝑣𝑖, 𝑗 and 𝑠 𝑗 = 𝜇 ( 𝑗) ·max
(2)
𝑖∈𝐵 𝑣𝑖, 𝑗 ).

Next, we need to partition the items into multiple sets. The optimal joint partition P∗ is obtained
from partitions {P∗𝑡 }𝑡 ∈𝑀 , where P∗𝑡 is a possible partition for mediator 𝑡 . Each part of P∗ is the
intersection of |𝑀 | parts, one from each partition in {P∗𝑡 }𝑡 ∈𝑀 . On the other hand, each part of P∗𝑡
is a subset of 𝐼𝑡 , except for maybe a single part. Hence, there exists at most a single part 𝐼0 ∈ P∗
such that 𝐼0 ⊈ 𝐼𝑡 for any 𝑡 ∈ 𝑀 . For ease of notation, if there is no such part (which can happen

when 𝐼 = 𝐼 ) we denote 𝐼0 = ∅. To partition the items of 𝐼 \ 𝐼0, we associate each part 𝑆 ∈ P∗ \ {𝐼0}
with an arbitrary mediator 𝑡 such that 𝑆 ⊆ 𝐼𝑡 , and denote by 𝐴𝑡 the set of all items belonging to

the parts associated with mediator 𝑡 , as defined by the aforementioned process. Observe that the

construction of 𝐴𝑡 guarantees that 𝐴𝑡 ⊆ 𝐼𝑡 . Additionally, {𝐼0} ∪ {𝐴𝑡 }𝑡 ∈𝑀 is a disjoint cover (i.e., a

partition) of 𝐼 .

A different partition of the items partitions them according to the bidder that values them the

most. In other words, for every 1 ≤ 𝑖 ≤ 𝑘 , 𝐻𝑖 is the set of items for which bidder 𝑖 has the largest

value. If multiple bidders have the same largest value for an item, we assign it to the set 𝐻𝑖 of an

arbitrary one of these bidders. Notice that the construction of 𝐻𝑖 guarantees that the sets {𝐻𝑖 }𝑖∈𝐵
are disjoint.

Finally, for every set 𝑆 ⊆ 𝐼 , we use 𝜙 (𝑆) to denote the sum of the |𝐵 | − 1 smaller values in

{∑𝑗 ∈𝐻𝑖∩𝑆 ℎ 𝑗 }𝑖∈𝐵 , i.e., the sum of all the values except the largest one. In other words, we calculate

for every bidder 𝑖 the sum of its values for items in 𝐻𝑖 ∩ 𝑆 , and then add up the |𝐵 | − 1 smaller sums.

Using all the above notation we can now state our promised upper bound on 𝑅(P∗).

Lemma 3.7. 𝑅(P∗) ≤ 𝜇 (𝐼0) · 𝑣 (𝐼0) +
∑

𝑗 ∈𝐼 𝑠 𝑗 +
∑

𝑡 ∈𝑀 𝜙 (𝐴𝑡 ).

Proof. Fix an arbitrary mediator 𝑡 ∈ 𝑀 , and let 𝑖 be the bidder whose term is not counted by

𝜙 (𝐴𝑡 ). For every part 𝑆 ∈ P∗ associated with 𝑡 , let 𝑖 ′ be a bidder other than 𝑖 that has one of the
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14 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

two largest bids for 𝑆 . By definition:

𝜇 (𝑆) · 𝑣 (𝑆) = max
(2)
𝑖′′∈𝐵

∑
𝑗 ∈𝑆

𝜇 ( 𝑗) · 𝑣𝑖′′, 𝑗 ≤
∑
𝑗 ∈𝑆

𝜇 ( 𝑗) · 𝑣𝑖′, 𝑗 ≤
∑

𝑗 ∈𝑆∩𝐻𝑖

𝑠 𝑗 +
∑

𝑗 ∈𝑆\𝐻𝑖

ℎ 𝑗 .

Summing over all parts associated with 𝑡 , we get:∑
𝑆 ∈P∗
𝑆⊆𝐴𝑡

𝜇 (𝑆) · 𝑣 (𝑆) ≤
∑

𝑗 ∈𝐴𝑡∩𝐻𝑖

𝑠 𝑗 +
∑

𝑗 ∈𝐴𝑡 \𝐻𝑖

ℎ 𝑗 ≤
∑
𝑗 ∈𝐴𝑡

𝑠 𝑗 + 𝜙 (𝐴𝑡 ) .

Summing over all mediators, we get:

𝑅(P∗) − 𝜇 (𝐼0) · 𝑣 (𝐼0) ≤
∑
𝑡 ∈𝑀

(∑
𝑗 ∈𝐴𝑡

𝑠 𝑗 + 𝜙 (𝐴𝑡 )
)
≤

∑
𝑗 ∈𝐼

𝑠 𝑗 +
∑
𝑡 ∈𝑀

𝜙 (𝐴𝑡 ) . □

Our next step is to describe joint partitions that can be found efficiently and upper bound the

different terms in the bound given by Lemma 3.7 (up to a constant factor). Finding such partitions

for the first two terms is quite straightforward.

Observation 3.8. The joint partitions where all mediators are silent {𝐼 } = ×𝑖∈𝐵{𝐼 } obeys:

𝑅({𝐼 }) ≥ 𝜇 (𝐼0) · 𝑣 (𝐼0) .

Proof.

𝑅({𝐼 }) = max
(2)
𝑖∈𝐵

(∑
𝑗 ∈𝐼

𝜇 ( 𝑗) · 𝑣𝑖, 𝑗

)
≥ max

(2)
𝑖∈𝐵

(∑
𝑗 ∈𝐼0

𝜇 ( 𝑗) · 𝑣𝑖, 𝑗

)
= 𝜇 (𝐼0) · 𝑣 (𝐼0) . □

Observation 3.9. The joint partitions P𝑆 = ×𝑡 ∈𝑀P𝑡 where every mediator reports all his informa-
tion obeys:

𝑅(P𝑆 ) = 𝑅({{ 𝑗}𝑗 ∈𝐼 } ∪ {𝐼 \ 𝐼 }) ≥
∑
𝑗 ∈𝐼

𝜇 ( 𝑗) ·max
(2)
𝑖∈𝐵 𝑣𝑖, 𝑗 =

∑
𝑗 ∈𝐼

𝑠 𝑗 .

It remains to find a joint partition that upper bounds, up to a constant factor, the third term in the

bound given by Lemma 3.7. If one knows the sets {𝐴𝑡 }𝑡 ∈𝑀 , then one can easily get such a partition

using the method of Ghosh et al. [11]. In this method, one partitions every set 𝐴𝑡 into the parts

{𝐴𝑡 ∩𝐻𝑖 }𝑡𝑖=1 and sort these parts according to the value of

∑
𝑗 ∈𝐴𝑡∩𝐻𝑖

ℎ 𝑗 . Then, with probability 1/2
every even part is united with the part that appears after it in the above order, and with probability

1/2 it is united with the part that appears before it in this order. It is not difficult to verify that if the

part of bidder 𝑖 is not the first in the order, then with probability 1/2 it is unified with the part that

appears before it in the order, in which case it contributes

∑
𝑗 ∈𝐴𝑡∩𝐻𝑖

ℎ 𝑗 to the revenue. Hence, the

expected contribution to the revenue of the parts produced from 𝐴𝑡 is at least
1/2 · 𝜙 (𝐴𝑡 ).

Algorithm 2 can find a partition that is competitive against

∑
𝑡 ∈𝑀 𝜙 (𝐴𝑡 ) without knowing the

sets {𝐴𝑡 }𝑡 ∈𝑀 . The algorithm uses the notation of a cover. We say that a set 𝑆 𝑗 of items is a cover of

an item 𝑗 ∈ 𝐼𝑡 ∩ 𝐻𝑖 if 𝑆 𝑗 ⊆ 𝐼𝑡 ∩ 𝐻𝑖′ for some 𝑖 ≠ 𝑖 ′.
Notice that the definition of cover guarantees that a part containing both 𝑗 and 𝑆 𝑗 contributes to

the revenue at least min{ℎ 𝑗 ,
∑

𝑗 ′∈𝑆 𝑗ℎ 𝑗′ }. Using this observation, each iteration of Algorithm 2 can

be viewed as trying to extract revenue from element 𝑗 . Additionally, observe that the partition P
produced by Algorithm 2 can be presented as a joint partition since every part in it, except for 𝐼 \ 𝐼 ,
contains only items that belong to a single set 𝐼𝑡 (for some mediator 𝑡 ∈ 𝑀).

Observation 3.10. Algorithm 2 can be implemented in polynomial time.
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Distributed Signaling Games 15

ALGORITHM 2: Local Experts - Auxiliary Algorithm

1 Let 𝐼 ′ ← 𝐼 and P ← {𝐼 \ 𝐼 }.
2 while 𝐼 ′ ≠ ∅ do
3 Let 𝑗 be the element maximizing ℎ 𝑗 in 𝐼 ′.
4 Find a cover 𝑆 𝑗 ⊆ 𝐼 ′ of 𝑗 obeying ℎ 𝑗 ≤

∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ ≤ 2ℎ 𝑗 , or maximizing

∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ if no cover of 𝑗

makes this expression at least ℎ 𝑗 .

5 Add the part 𝑆 𝑗 ∪ { 𝑗} to P, and remove the elements of 𝑆 𝑗 ∪ { 𝑗} from 𝐼 ′.

6 return P

Proof. One can find a cover 𝑆 𝑗 maximizing

∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ in line 4 of the algorithm by considering

the set 𝐼𝑡 ∩ 𝐻𝑖′ ∩ 𝐼 ′ for every mediators 𝑡 and bidder 𝑖 ′ obeying 𝑗 ∈ 𝐼𝑡 and 𝑗 ∉ 𝐻𝑖′ . Moreover, if

this cover is of size larger than 2ℎ 𝑗 , then by removing elements from this cover one by one the

algorithm must find a cover 𝑆 ′𝑗 obeying ℎ 𝑗 ≤
∑

𝑗 ′∈𝑆′
𝑗
ℎ 𝑗 ′ ≤ 2ℎ 𝑗 because 𝑗 is the element maximizing

ℎ 𝑗 in 𝐼 ′. □

The following lemma relates the revenue of the set produced by Algorithm 2 to

∑
𝑡 ∈𝑀 𝜙 (𝐴𝑡 ).

Lemma 3.11. No iteration of the loop of Algorithm 2 decreases the value of the expression 𝑅(P) +
1/3 ·∑𝑡 ∈𝑀 𝜙 (𝐴𝑡 ∩ 𝐼 ′).8

Proof. Fix an arbitrary iteration. There are two cases to consider. First, assume ℎ 𝑗 ≤
∑

𝑗 ′∈𝑆 𝑗
ℎ 𝑗 ′ ≤

2ℎ 𝑗 . In this case the increase in 𝑅(P) during this iteration is:

𝜇 (𝑆 𝑗 ∪ { 𝑗}) · 𝑣 (𝑆 𝑗 ∪ { 𝑗}) ≥ min

ℎ 𝑗 ,
∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′

 = ℎ 𝑗 .

On the other hand, one can observe that, when removing an element 𝑗 ′ from 𝑆 , the value of 𝜙 (𝑆)
can decrease by at most ℎ 𝑗 ′ . Hence, the decrease in

∑
𝑡 ∈𝑀 𝜙 (𝐴𝑡 ∩ 𝐼 ′) during this iteration can be

upper bounded by:

ℎ 𝑗 +
∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ ≤ 3ℎ 𝑗 .

Consider now the case

∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ < ℎ 𝑗 . In this case the increase in 𝑅(P) during the iteration is:

𝜇 (𝑆 𝑗 ∪ { 𝑗}) · 𝑣 (𝑆 𝑗 ∪ { 𝑗}) ≥ min

ℎ 𝑗 ,
∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′

 =
∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ .

If 𝑗 does not belong to 𝐴𝑡 for any mediator 𝑡 , then by the above argument we can bound the

decrease in

∑
𝑡 ∈𝑀 𝜙 (𝐴𝑡 ∩ 𝐼 ′) by

∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ . Hence, assume from now on that there exists a mediator

𝑡 ′ and a bidder 𝑖 such that 𝑗 ∈ 𝐴𝑡 ′ ∩ 𝐻𝑖 . Let 𝑖
′ ≠ 𝑖 be a bidder maximizing

∑
𝑗 ′∈𝐻𝑖′∩𝐴𝑡′∩𝐼 ′ ℎ 𝑗 ′ . Clearly,

the removal of a single element from 𝐼 ′ can decrease 𝜙 (𝐴𝑡 ′ ∩ 𝐼 ′) by no more than

∑
𝑗 ′∈𝐻𝑖′∩𝐴𝑡′∩𝐼 ′ ℎ 𝑗 ′ .

Hence, the decrease in

∑
𝑡 ∈𝑀 𝜙 (𝐴𝑡 ∩ 𝐼 ′) during the iteration of the algorithm can be upper bounded

by: ∑
𝑗 ′∈𝐻𝑖′∩𝐴𝑡′∩𝐼 ′

ℎ 𝑗 ′ +
∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ .

8
Before the algorithm terminates P is a partial partition in the sense that some items do not belong to any part in it.

However, the definition of 𝑅 (P) naturally extends to such partial partitions.
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16 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

On the other hand, 𝐻𝑖′ ∩𝐴𝑡 ′ ∩ 𝐼 ′ is a possible cover for 𝑗 , and thus, by the optimality of 𝑆 𝑗 :∑
𝑗 ′∈𝐻𝑖′∩𝐴𝑡′∩𝐼 ′

ℎ 𝑗 ′ ≤
∑
𝑗 ′∈𝑆 𝑗

ℎ 𝑗 ′ . □

Corollary 3.12. 𝑅(P𝐴) ≥ 1/3 ·∑𝑡 ∈𝑀 𝜙 (𝐴𝑡 ), where P𝐴 is the partition produced by Algorithm 2.

Proof. After the initialization step of Algorithm 2 we have:

𝑅(P) + 1/3 ·
∑
𝑡 ∈𝑀

𝜙 (𝐴𝑡 ∩ 𝐼 ′) ≥ 1/3 ·
∑
𝑡 ∈𝑀

𝜙 (𝐴𝑡 ) .

On the other hand, when the algorithm terminates:

𝑅(P) + 1/3 ·
∑
𝑡 ∈𝑀

𝜙 (𝐴𝑡 ∩ 𝐼 ′) = 𝑅(P𝐴)

because 𝐼 ′ = ∅. The corollary now follows from Lemma 3.11. □

We are now ready to prove Theorem 1.3.

Theorem 1.3. If mediators are local experts, there exists a polynomial time 5-approximation
algorithm for DSP.

Proof. Consider an algorithm that outputs the best solution out of {𝐼 }, P𝑆 and P𝐴. The following
inequality shows that at least one of these joint partitions has a revenue of 𝑅(P∗)/5:

𝑅({𝐼 }) + 𝑅(P𝑆 ) + 3𝑅(P𝐴) ≥
∑
𝑗 ∈𝐼

𝑠 𝑗 + 𝜇 (𝐼0) · 𝑣 (𝐼0) +
∑
𝑡 ∈𝑀

𝜙 (𝐴𝑡 ) ≥ 𝑅(P∗) ,

where the first inequality holds by Observations 3.8 and 3.9 and Corollary 3.12; and the second

inequality uses the upper bound on 𝑅(P∗) proved by Lemma 3.7. □

4 THE STRATEGIC PROBLEM
This section explores the DSP problem from a strategic viewpoint, in which the auctioneer cannot
control the signals produced by each mediator, and is, therefore, trying to solicit information from

the mediators that would yield a maximal revenue in the auction. In other words, the objective

of the auctioneer is to design a mechanismM whose equilibria (i.e., the signals P ′
1
,P ′

2
, . . . ,P ′𝑚

which are now chosen strategically by the mediators) induce maximum revenue. Our first contri-

bution is the introduction of the Shapley mechanism, whose definition appears in Subsection 4.1.

Subsection 4.1 also proves some interesting properties of the Shapley mechanism (Theorems 1.4

and 1.5). Subsection 4.2 studies the price of anarchy and price of stability of the DSP game induced

by the Shapley mechanism (Theorems 1.6 and 1.7). Finally, Subsection 4.3 shows that the Shapley

mechanism is the only possible mechanism if one insists on a few natural requirements.

4.1 The Shapley Mechanism
In this subsection we describe a mechanism S which determines the payments to the mediators as

a function of the reported signals. Our mechanism aims to incentivize mediators to report useful

information, with the hope that global efficiency emerges despite selfish behavior of each mediator.

In the remainder of the paper we study the mechanism S and the game DSPS it induces. For the

sake of generality, we describe S for a game generalizing DSP.
Consider a game G𝑚 of𝑚 players where each player 𝑡 has a finite set 𝐴𝑡 of possible strategies,

one of which ∅𝑡 ∈ 𝐴𝑡 is called the null strategy of 𝑡 . The value of a strategy profile in the game G𝑚
is determined by a value function 𝑣 : 𝐴1 ×𝐴2 × . . . ×𝐴𝑚 → R. A mechanism𝑀 = (Π1,Π2, . . . ,Π𝑚)
for G𝑚 is a set of payments rules. In other words, if the players choose strategies 𝑎1 ∈ 𝐴1, 𝑎2 ∈
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𝐴2, . . . , 𝑎𝑚 ∈ 𝐴𝑚 , then the payment to player 𝑡 under mechanism𝑀 is Π𝑡 (𝑣, 𝑎1, 𝑎2, . . . , 𝑎𝑚). Notice
that DSP fits the definition of G𝑚 when 𝐴𝑡 = Ω(P𝑡 ) is the set of partitions that 𝑡 can report for

every mediator 𝑡 , and ∅𝑡 is the silence strategy {𝐼 }. The appropriate value function 𝑣 for DSP is

the function 𝑅(×𝑚𝑡=1P ′𝑡 ), where P ′𝑡 ∈ 𝐴𝑡 is the strategy of mediator 𝑡 . In other words, the value

function 𝑣 of a DSP game is equal to the revenue of the auctioneer.

Given a strategy profile 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑚), and subset 𝐽 ⊆ [𝑚] of players, we write 𝑎 𝐽 to denote
a strategy profiles where the players of 𝐽 play their strategy in 𝑎, and the other players play their

null strategies. We abuse notation and denote by ∅ the strategy profile 𝑎∅ where all players play
their null strategies. Additionally, we write (𝑎′𝑡 , 𝑎−𝑡 ) to denote a strategy profile where player 𝑡

plays 𝑎′𝑡 and the rest of the players follow the strategy profile 𝑎. The mechanism S we propose

distributes the increase in the value of the game (compared to 𝑣 (∅)) among the players according to

their Shapley value: it pays each player his expected marginal contribution to the value according

to a uniformly random ordering of the𝑚 player. Formally, the payoff for player 𝑡 given a strategy

profile 𝑎 is

Π𝑡 (𝑎) =
1

𝑚!

·
∑
𝜎 ∈𝑆𝑚

[
𝑣
(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗≤𝜎 (𝑡 ) }

)
− 𝑣

(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗<𝜎 (𝑡 ) }

) ]
, (1)

which can alternatively be written as

Π𝑡 (𝑎) =
∑

𝐽 ⊆[𝑚]\{𝑡 }
𝛾 𝐽

(
𝑣 (𝑎 𝐽∪{𝑡 }) − 𝑣 (𝑎 𝐽 )

)
, (2)

where 𝛾 𝐽 =
| 𝐽 |!(𝑚−| 𝐽 |−1)!

𝑚!
is the probability that the players of 𝐽 appear before player 𝑡 when

the players are ordered according to a uniformly random permutation 𝜎 ∈𝑅 𝑆𝑚 . We use both

definitions (1) and (2) interchangeably, as each one is more convenient in some cases than the other.

We remark that the above payoffs can be implemented efficiently.
9

Clearly, the mechanismS is anonymous (symmetric). The main feature of the Shapley mechanism

is that it is efficient. In other words, the sum of the payoffs is exactly equal to the total increase in

value (in the case of DSP, the surplus revenue of the auctioneer compared to the initial state).
10

Proposition 4.1 (Efficiency property). For every strategy profile 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑚),

𝑣 (𝑎) − 𝑣 (∅) =
𝑚∑
𝑡=1

Π𝑡 (𝑎) .

Proof. Recall that the payoff of mediator 𝑡 is:

1

𝑚!

·
∑
𝜎 ∈𝑆𝑚

[
𝑣
(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗≤𝜎 (𝑡 ) }

)
− 𝑣

(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗<𝜎 (𝑡 ) }

) ]
.

9
Assuming value queries, we can calculate a payoff for every player by drawing a random permutation 𝜎 and paying

𝑣

(
𝑎{𝜎−1 ( 𝑗 ) |1≤ 𝑗≤𝜎 (𝑡 ) }

)
− 𝑣

(
𝑎{𝜎−1 ( 𝑗 ) |1≤ 𝑗<𝜎 (𝑡 ) }

)
for each mediator 𝑡 . Clearly this procedure produces the payoffs of our

mechanism in expectation. Alternatively, the expected payoff of each player can be approximated using sampling.

10
One natural alternative for the Shapley mechanism is a VCG-based mechanism. The main disadvantage of this alternative

mechanism is that it is not necessarily efficient. In fact, one can easily design instances where a VCG-based mechanism

induces a total payoff which is significantly larger than the increase in the value.
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18 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

Summing over all mediators, we get:

𝑚∑
𝑡=1

Π𝑡 (P ′𝑡 ,P ′−𝑡 ) =
𝑚∑
𝑡=1

{
1

𝑚!

·
∑
𝜎 ∈𝑆𝑚

[
𝑣
(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗≤𝜎 (𝑡 ) }

)
− 𝑣

(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗<𝜎 (𝑡 ) }

) ]}
=

1

𝑚!

·
∑
𝜎 ∈𝑆𝑚

𝑚∑
𝑡=1

[
𝑣
(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗≤𝜎 (𝑡 ) }

)
− 𝑣

(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗<𝜎 (𝑡 ) }

) ]
=

1

𝑚!

·
∑
𝜎 ∈𝑆𝑚

[
𝑣
(
𝑎 {𝜎−1 ( 𝑗) |1≤ 𝑗≤𝑚}

)
− 𝑣 (𝑎∅)

]
= 𝑣 (𝑎) − 𝑣 (∅) . □

Proposition 4.1 implies the following theorem. Notice that Theorem 1.5 is in fact a restriction of

this theorem to the game DSPS .

Theorem 4.2. For every Nash equilibrium 𝑎, 𝑣 (𝑎) ≥ 𝑣 (∅).

Proof. A player always has the option of playing his null strategy, which results in a zero

payoff for him. Thus, the payoff of a player in a Nash equilibrium can never be negative. Hence, by

Proposition 4.1: 𝑣 (𝑎) ≥ 𝑣 (∅) +∑𝑚
𝑖=1 Π𝑡 (𝑎) ≥ 𝑣 (∅). □

Next, let us prove Theorem 1.4. For convenience, we restate it below.

Theorem 1.4. Let G𝑚 be a non-cooperative𝑚-player game in which the payoff of each player is
set according to S. Then G𝑚 admits a pure Nash equilibrium. Moreover, best response dynamics are
guaranteed to converge to such an equilibrium.

Proof. We prove the theorem by showing that G𝑚 is an exact potential game, which in turn

implies all the conclusions of the theorem. Recall that an exact potential game is a game for which

there exists a potential function Φ : 𝐴1 ×𝐴2 × · · · ×𝐴𝑡 → R such that every strategy profile 𝑎 and

possible deviation 𝑎′𝑡 ∈ 𝐴𝑡 of a player 𝑡 obey:

Π𝑡 (𝑎′𝑡 , 𝑎−𝑡 ) − Π𝑡 (𝑎) = Φ(𝑎′𝑡 , 𝑎−𝑡 ) − Φ(𝑎) . (3)

In our case the potential function is: Φ(𝑎) = ∑
𝐽 ⊆[𝑚] 𝛽 𝐽 · 𝑣 (𝑎 𝐽 ), where 𝛽 𝐽 = ( | 𝐽 |−1)!(𝑚−| 𝐽 |)!

𝑚!
. Let

us prove that this function obeys (3). It is useful to denote by 𝑎′ the strategy profile (𝑎′𝑡 , 𝑎−𝑡 ). By
definition:

Π𝑡 (𝑎′) − Π𝑡 (𝑎) =
∑

𝐽 ⊆[𝑚]\{𝑖 }
𝛾 𝐽

[
𝑣 (𝑎 𝐽∪{𝑖 }) − 𝑣 (𝑎 𝐽 )

]
−

∑
𝐽 ⊆[𝑚]\{𝑖 }

𝛾 𝐽

[
𝑣 (𝑎′

𝐽∪{𝑖 }) − 𝑣 (𝑎
′
𝐽 )

]
. (4)

For 𝐽 ⊆ [𝑚] \ {𝑖}, we have 𝑎 𝐽 = 𝑎′
𝐽
. Plugging this observation into (4), and rearranging, we get:

Π𝑡 (𝑎′) − Π𝑡 (𝑎) =
∑

𝐽 ⊆[𝑚]\{𝑖 }
𝛾 𝐽

[
𝑣 (𝑎 𝐽∪{𝑖 }) − 𝑣 (𝑎′𝐽∪{𝑖 })

]
. (5)

For every 𝐽 containing 𝑖 we get: 𝛾 𝐽 \{𝑖 } = 𝛽 𝐽 . Using this observation and the previous observation

that 𝑎 𝐽 = 𝑎′
𝐽
for 𝐽 ⊆ [𝑚] \ {𝑖}, (5) can be replaced by:

Π𝑡 (𝑎′) − Π𝑡 (𝑎) =
∑

𝐽 ⊆[𝑚]
𝛽 𝐽 (𝑣 (𝑎′𝐽 ) − 𝑣 (𝑎 𝐽 )) = Φ(𝑎′) − Φ(𝑎) . □

Before concluding this section, a few remarks regarding the use of S to DSP are in order:

(1) The reader may wonder why the auctioneer cannot impose on the mediators any desired

outcome×𝑡 ∈𝑀P ′𝑡 by offering mediator 𝑡 a negligible payment if he signals P ′𝑡 , and no payment

otherwise. However, implementing such a mechanism requires the auctioneer to know the
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Distributed Signaling Games 19

information sets P𝑡 of each mediator in advance. In contrast, our mechanism requires access

only to the outputs of the mediators.

(2) Proposition 4.1 implies that the auctioneer distributes the entire surplus among the mediators,

which seems to defeat the purpose of the mechanism. However, in the target application she

can scale the revenue by a factor 𝛼 ∈ (0, 1] and only distribute the corresponding fraction of

the surplus. As all of our results are invariant under scaling, this trick can be applied in a

black box fashion. Thus, we assume, without loss of generality, 𝛼 = 1.

(3) We assume mediators never report a signal which is inconsistent with the true identity of

the sold element 𝑗𝑅 . The main justification for this assumption is that the mediators’ signals

must be consistent with one another (as they refer to a single element 𝑗𝑅). Thus, given that

sufficiently many mediators are honest, “cheaters” can be easily detected.

(4) Note that for a particular ordering of the mediators 𝜎 ∈ S𝑚 and a particular joint strategy

profile, the marginal payoff of a mediator may be negative (if she is out of luck and contributes

negatively to the revenue according to 𝜎). However, we stress that the expected value (over

𝜎) of each mediator is never negative in any equilibrium strategy (by Theorem 4.2). Since in

realistic applications the process is assumed to be repeated over time, the probability that a

mediator has overall negative payoff is negligible.

4.2 The Price of Anarchy and Price of Stability of the Shapley Mechanism
In this section we analyze the PoS and PoA of the DSPS game. First, we note that the proof of

Theorem 1.2 in Section 3.2.1 shows that 𝑅({𝐼 }) ≥ 𝑂𝑃𝑇 /min{𝑛, 𝑘 − 1} whenever 𝑘 ≥ 2. Together

with Theorem 1.5, we get:

Theorem 1.6. For 𝑘 ≥ 2, the price of anarchy of DSPS (𝑛, 𝑘,𝑚) is no more than min{𝑘 − 1, 𝑛}.
Remark: The above statement of Theorem 1.7 uses a somewhat different notation than its original

statement in Section 1.2, but both statements are equivalent. The same is true for the statement of

Theorem 1.7 below.

Naturally, the upper bound given by Theorem 1.6 applies also to the price of stability of DSPS .
The rest of this section is devoted to proving Theorem 1.7, which shows that Theorem 1.6 is

asymptotically tight.

Theorem 1.7. For every 𝑛 ≥ 1, there is a DSPS (3𝑛 + 1, 𝑛 + 2, 2) game for which the price of stability
is at least 𝑛. Moreover, all the mediators in this game are local experts.

We begin the proof of Theorem 1.7 by describing the DSPS (3𝑛 + 1, 𝑛 + 2, 2) game whose price of

stability we bound. For ease of notation, let us denote this game by DSP𝑛 .
items: The 3𝑛 + 1 items of DSP𝑛 all have equal probabilities. It is convenient to denoted them

by {𝑎ℓ }𝑛ℓ=1, {𝑏ℓ }𝑛ℓ=1, {𝑐ℓ }𝑛ℓ=1 and 𝑑 .
bidders: The 𝑛 + 2 bidders of DSP𝑛 can be partitioned into 3 types. One bidder, denoted by 𝑖𝐺 ,

has a bid of 𝜀 for the items of {𝑏ℓ }𝑛ℓ=1 and a bid of 1 for all other items, where 𝜀 ∈ (0, 1) is a
value that will be defined later. One bidder, denoted by 𝑖𝑂 has a bid of 1 for item 𝑑 and a bid

of 0 for all other items. Finally, the other 𝑛 bidders are denoted by {𝑖ℓ }𝑛ℓ=1. Each bidder 𝑖ℓ has

a bid of 1 for item 𝑏ℓ and a bid of 0 for all other items.

mediators: The two mediators of DSP𝑛 are denoted by 𝑡1 and 𝑡2. Both mediators are local

experts whose partitions are defined by the sets I1 = {𝑎ℓ , 𝑏ℓ }𝑛ℓ=1 and I2 = {𝑏ℓ , 𝑐ℓ }𝑛ℓ=1, respec-
tively.

A graphical sketch of DSP𝑛 is given by Figure 2. Intuitively, getting a high revenue in DSP𝑛
requires pairing 𝑏 items with 𝑎 or 𝑐 items. Unfortunately, one mediator can pair the 𝑏 items with

𝑎 items, and the other mediator can pair them with 𝑐 items, thus, creating “tension” between the

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: December 2019.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Moran Feldman, Moshe Tennenholtz, and Omri Weinstein

𝑉 =

©­­­­­­­­«

𝑎 items︷           ︸︸           ︷
1 1 . . . 1

𝑏 items︷          ︸︸          ︷
𝜀 𝜀 . . . 𝜀

𝑐 items︷           ︸︸           ︷
1 1 . . . 1

𝑑︷ ︸︸ ︷
1

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1

0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0

...
...

...
...

...
...

...
...

... 0

0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0

ª®®®®®®®®¬

← 𝑖𝐺
← 𝑖𝑂
← 𝑖1
← 𝑖2

...

← 𝑖𝑛

P1 = □ □ · · · □ □ □ · · · □
P2 = □ □ · · · □ □ □ · · · □

Fig. 2. A graphical representation of DSP𝑛 . P1 and P2 are the partitions of mediators 𝑡1 and 𝑡2, respectively.

mediators. The main idea of the proof is to show that both mediators are incentivized to report

partitions pairing the 𝑏 items, which results in a joint partition isolating all the 𝑏 items.

The following observation simplifies many of our proofs.

Observation 4.3. The contribution 𝜇 (𝑆) · 𝑣 (𝑆) of a part 𝑆 to the revenue 𝑅(P) of a partition P ∋ 𝑆
is:

• (3𝑛 + 1)−1 if 𝑆 contains 𝑑 .
• (3𝑛 + 1)−1 if 𝑆 contains an item of {𝑏ℓ }𝑛ℓ=1 and |𝑆 | ≥ 2.
• 𝜀/(3𝑛 + 1) if 𝑆 contains only a single item, and this item belongs to {𝑏ℓ }𝑛ℓ=1.
• 0 otherwise.

Proof. Notice that the only bidder that values more than one item is 𝑖𝐺 , and thus, 𝑖𝐺 is the single

bidder that can have a bid larger than 1/|𝑆 | for 𝑆 . Hence, 𝑣 (𝑆) is upper bounded by 1/|𝑆 |, and one

can bound the contribution of 𝑆 by:

𝜇 (𝑆) · 𝑣 (𝑆) ≤ |𝑆 |
3𝑛 + 1 ·

1

|𝑆 | = (3𝑛 + 1)
−1 .

If the part 𝑆 contains the item 𝑑 , then both bidders 𝑖𝐺 and 𝑖𝑂 have bids of at least 1/|𝑆 | for it. Hence,
the above upper bound on the contribution of 𝑆 is in fact tight. Similarly when 𝑆 contains an item

𝑏ℓ and some other item 𝑗 , it has a contribution of (3𝑛 + 1)−1 since two bidders have a bid of at least

1/|𝑆 | for it, bidder 𝑖ℓ and a second bidder that depends on 𝑗 :

• If 𝑗 = 𝑏ℓ′ for some ℓ ′ ≠ ℓ , bidder 𝑖ℓ′ .

• If 𝑗 = 𝑑 , 𝑗 = 𝑎ℓ′ or 𝑗 = 𝑐ℓ′ , bidder 𝑖𝐺 .

If the part 𝑆 contains only a single item 𝑏ℓ , then it gets non-zero bids only from two bidders: a

bid of 1 from 𝑖ℓ and a bid of 𝜀 from bidder 𝑖𝐺 . Hence, 𝜇 (𝑆) · 𝑣 (𝑆) = (3𝑛 + 1)−1 · 𝜀. Finally, if 𝑆 does

not fall into any of the cases considered above, then it must contain only items of {𝑎ℓ , 𝑐ℓ }𝑛ℓ=1. Such
a part receives a non-zero bid only from bidder 𝑖𝐺 , and thus, 𝑣 (𝑆) = 0. □

The next lemma gives a lower bound on the optimal revenue of DSP𝑛 .

Lemma 4.4. The optimal revenue of DSP𝑛 is at least (𝑛 + 1)/(3𝑛 + 1).

Proof. Consider a scenario in which 𝑡1 pairs the 𝑏 items with 𝑎 items, and 𝑡2 is silent. Formally,

the two mediators use the following strategies 𝑂1 = {{𝑎ℓ , 𝑏ℓ }}𝑛ℓ=1 ∪ {{𝑐ℓ }𝑛ℓ=1 ∪ {𝑑}} and 𝑂2 =

{𝐼 }, respectively. Observe that these are indeed feasible strategies for 𝑡1 and 𝑡2, respectively. By
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Observation 4.3, the revenue of DSP𝑛 given these strategies is:

𝑅(𝑂1 ×𝑂2) = 𝑅(𝑂1) =
𝑛∑
ℓ=1

𝜇 ({𝑎ℓ , 𝑏ℓ }) · 𝑣 ({𝑎ℓ , 𝑏ℓ }) + 𝜇 ({𝑐ℓ }𝑛ℓ=1 ∪ {𝑑}) · 𝑣 ({𝑐ℓ }𝑛ℓ=1 ∪ {𝑑})

=

𝑛∑
ℓ=1

1

3𝑛 + 1 +
1

3𝑛 + 1 =
𝑛 + 1
3𝑛 + 1 . □

Our next objective is to get an upper bound on the revenue of any Nash equilibrium of DSP𝑛 .
We say that an item 𝑎ℓ is redundant in a strategy P ′

1
of 𝑡1 if the part 𝑆 ∈ P ′1 containing 𝑎ℓ obeys

one of the following:

• 𝑆 contains the item 𝑑 or an item 𝑎ℓ′ for some ℓ ′ ≠ ℓ .

• 𝑆 contains no items of {𝑏ℓ }𝑛ℓ=1.
The next lemma shows that a redundant item is indeed redundant in the sense that removing it

does not change the contribution to the revenue of parts containing it.

Lemma 4.5. If 𝑎ℓ is redundant in a strategy P ′
1
of 𝑡1 and 𝑆 ∈ P ′1 is the part containing 𝑎ℓ , then

𝜇 (𝑆) · 𝑣 (𝑆) = 𝜇 (𝑆 \ {𝑎ℓ }) · 𝑣 (𝑆 \ {𝑎ℓ }). Moreover, for every possible strategy P ′
2
of 𝑡2, if 𝑆 ′ ∈ P ′1 × P ′2

is the part of P ′
1
× P ′

2
containing 𝑎ℓ , then 𝜇 (𝑆 ′) · 𝑣 (𝑆 ′) = 𝜇 (𝑆 ′ \ {𝑎ℓ }) · 𝑣 (𝑆 ′ \ {𝑎ℓ })

Proof. We prove the second part of the lemma. The first part follows from it since one possible

choice of P ′
2
is {𝐼 }. Since 𝑎ℓ is redundant in P1, one of the following three cases must hold:

• The first case is when𝑑 ∈ 𝑆 . Observe that𝑑 must share a part with 𝑎ℓ inP ′2, and thus,𝑑 belongs

also to 𝑆 ′. Hence, by Observation 4.3, 𝜇 (𝑆 ′) · 𝑣 (𝑆 ′) = (3𝑛 + 1)−1 = 𝜇 (𝑆 ′ \ {𝑎ℓ }) · 𝑣 (𝑆 ′ \ {𝑎ℓ }).
• The second case is when ({𝑏ℓ }𝑛ℓ=1 ∪ {𝑑}) ∩ 𝑆 = ∅. Since 𝑆 ′ is a subset of 𝑆 , we get also

({𝑏ℓ }𝑛ℓ=1 ∪ {𝑑}) ∩𝑆 ′ = ∅, and thus, by Observation 4.3, 𝜇 (𝑆 ′) · 𝑣 (𝑆 ′) = 0 = 𝜇 (𝑆 ′ \ {𝑎ℓ }) · 𝑣 (𝑆 ′ \
{𝑎ℓ }).
• The third case is when there exits ℓ ′ ≠ ℓ for which 𝑎ℓ′ ∈ 𝑆 . Since 𝑎ℓ and 𝑎ℓ′ must share a part

in P2, they both belong also to 𝑆 ′. Using Observation 4.3 one can verify that removing 𝑎ℓ
from a set 𝑆 ′ containing 𝑎ℓ′ can never change 𝜇 (𝑆 ′) · 𝑣 (𝑆 ′). □

A strategy P ′
1
of 𝑡1 is called 𝑎-helped if every part in it that contains an item of {𝑏ℓ }𝑛ℓ=1 contains

also an item of {𝑎ℓ }𝑛ℓ=1. The next lemma shows that every strategy of 𝑡1 is dominated by an 𝑎-helped

one.

Lemma 4.6. If P ′
1
is a strategy of 𝑡1, then there exists an 𝑎-helped strategy P ′′

1
of 𝑡1 such that:

Π1 (P ′′1 ,P ′2) ≥ Π1 (P ′1,P ′2) for every strategy P ′2 of 𝑡2. Moreover, for every pair of items from {𝑏ℓ }𝑛ℓ=1 ∪
{𝑑}, P ′′

1
separates this pair (i.e., each item of the pair appear in a different part of P ′′

1
) if and only if

P ′
1
does.

Proof. Let 𝐷 (P ′
1
) be the number of parts in P ′

1
that contain an item of {𝑏ℓ }𝑛ℓ=1 but no items of

{𝑎ℓ }𝑛ℓ=1. We prove the lemma by induction on 𝐷 (P ′
1
). If 𝐷 (P ′

1
) = 0, then P ′

1
is 𝑎-helped and we are

done. It remains to prove the lemma for 𝐷 (P ′
1
) > 0 assuming that it holds for every strategy

ˆP ′
1
for

which 𝐷 (P ′
1
) > 𝐷 ( ˆP ′

1
).

Since 𝐷 (P ′
1
) > 0 and the number of {𝑎ℓ }𝑛ℓ=1 items and {𝑏ℓ }𝑛ℓ=1 items is equal, there must be in P ′

1

either a part that contains at least two items of {𝑎ℓ }𝑛ℓ=1 or a part that contains an item of {𝑎ℓ }𝑛ℓ=1 and
no items of {𝑏ℓ }𝑛ℓ=1. Both options imply the existence of a redundant item 𝑎ℓ′ in P ′1. Additionally,
let 𝑆 be one of the parts of P ′

1
counted by 𝐷 (P ′

1
), i.e., a part that contains an item of {𝑏ℓ }𝑛ℓ=1 but no

items of {𝑎ℓ }𝑛ℓ=1.
Consider the strategy

˜P ′
1
obtained from P ′

1
by moving 𝑎ℓ′ to the part 𝑆 . By Lemma 4.5 the

contribution to the revenue of the part containing 𝑎ℓ′ in P ′1 does not decrease following the removal
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of 𝑎ℓ′ from it. On the other hand, Observation 4.3 implies that adding items to a part can only

increase its contribution. Hence, the contribution of 𝑆 to the revenue is at least as large in
˜P ′
1

as in P ′
1
. Combining both arguments, we get: 𝑅( ˜P ′

1
) ≥ 𝑅(P ′

1
). An analogous argument can be

used to show also that 𝑅( ˜P ′
1
× P ′

2
) ≥ 𝑅(P ′

1
× P ′

2
) for every strategy P ′

2
of 𝑡2. Thus, by definition,

Π1 ( ˜P ′1,P ′2) ≥ Π1 (P ′1,P ′2).
Observe that the construction of

˜P ′
1
from P ′

1
guarantees that 𝐷 ( ˜P ′

1
) = 𝐷 (P ′

1
) − 1. Hence, by

applying the induction hypothesis to
˜P ′
1
we get a strategy P ′′

1
which, for every strategy P ′

2
of 𝑡2,

obeys the inequality:

Π1 (P ′′1 ,P ′2) ≥ Π1 ( ˜P ′1,P ′2) ≥ Π1 (P ′1,P ′2)
Moreover, the construction of

˜P ′
1
from P ′

1
does not move any items of {𝑏ℓ }𝑛ℓ=1 ∪ {𝑑}, thus, ˜P ′

1

separates pairs from this set if and only if P ′
1
does. The lemma now follows since the induction

hypothesis guarantees that P ′′
1
separates pairs from the above set if and only if

˜P ′
1
does. □

Using the previous lemmawe can prove an important property of not strictly dominated strategies

of 𝑡1.

Lemma 4.7. If P ′
1
is not a strictly dominated strategy of 𝑡1, then P ′1 isolates the items of {𝑏ℓ }𝑛ℓ=1∪{𝑑}

from each other.

Proof. Assume towards a contradiction that the lemma does not hold, and let P ′
1
be a counter

example. In other words, P ′
1
does not isolate the items of {𝑏ℓ }𝑛ℓ=1 ∪ {𝑑} from each other, and yet

there exists a strategy P ′
2
of 𝑡2 such that every strategy

ˆP ′
1
of 𝑡1 obeys Π1 ( ˆP ′1,P ′2) ≤ Π1 (P ′1,P ′2).

By Lemma 4.6 we may assume that P ′
1
is an 𝑎-helped strategy (otherwise, we can replace P ′

1
with

the strategy whose existence is guaranteed by this lemma).

Let 𝑏ℓ′ be an item that is not isolated by P ′
1
from some other item of {𝑏ℓ }𝑛ℓ=1 ∪ {𝑑}. The existence

of 𝑏ℓ′ implies the existence of a redundant item 𝑎ℓ′′ in P ′1 because one of the following must be true:

• 𝑏ℓ′ shares a part in P ′1 with another item of {𝑏ℓ }𝑛ℓ=1. Since the number of {𝑎ℓ }𝑛ℓ=1 items is

equal to the number of {𝑏ℓ }𝑛ℓ=1 items, there must be either a part of P ′
1
that contains an item

of {𝑎ℓ }𝑛ℓ=1 but no items of {𝑏ℓ }𝑛ℓ=1 or a part of P ′1 that contains two items of {𝑎ℓ }𝑛ℓ=1.
• 𝑏ℓ′ shares a part in 𝑃 ′

1
with the item 𝑑 . Since P ′

1
is 𝑎-helped, this part must contain also an

item of {𝑎ℓ }𝑛ℓ=1 (which is redundant).

Consider the strategy
˜P ′
1
obtained from P ′

1
by removing the items 𝑎ℓ′′ and 𝑏ℓ′ from their original

parts and placing them together in a new part. Let us analyze 𝑅( ˜P ′
1
) + 𝑅( ˜P ′

1
× P ′

2
). Since 𝑎ℓ′′ is

redundant, its removal from its original part
˜P ′
1
does not decrease the contribution of this part to

either revenue by Lemma 4.5. Additionally, the removal of 𝑎ℓ′′ leaves 𝑏ℓ′ either sharing a part in

𝑃 ′
1
with 𝑑 or with another item of {𝑎ℓ }𝑛ℓ=1 and another item of {𝑏ℓ }𝑛ℓ=1. In both cases, the removal

of 𝑏ℓ′ does not affect the contribution of its part to 𝑅( ˜P ′
1
) by Observation 4.3. On the other hand,

the removal of 𝑏ℓ′ can decrease the contribution of its part to the revenue 𝑅( ˜P ′
1
× P ′

2
). However,

Observation 4.3 guarantees that this decrease is at most (3𝑛 + 1)−1. Finally, the contribution of the

new part {𝑎ℓ′′, 𝑏ℓ′} to 𝑅( ˜P ′1) is (3𝑛 + 1)−1. Combining all these observations, we get:

𝑅( ˜P ′
1
) + 𝑅( ˜P ′

1
× P ′

2
) ≥ 𝑅(P ′

1
) + 𝑅(P ′

1
× P2) − (3𝑛 + 1)−1 + (3𝑛 + 1)−1 +𝐴 (6)

= 𝑅(P ′
1
) + 𝑅(P ′

1
× P2) +𝐴 ,

where 𝐴 is the contribution of parts of
˜P ′
1
× P ′

2
that are subsets of {𝑎ℓ′′, 𝑏ℓ′} to 𝑅( ˜P ′1 × P ′2). To get a

contradiction it is enough to show that 𝐴 > 0, i.e., that at least one of these parts has a positive

contribution to 𝑅( ˜P ′
1
× P ′

2
). There are two cases to consider:
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• If 𝑏ℓ′ shares a part with 𝑎ℓ′′ in P ′2, then the part {𝑎ℓ′′, 𝑏ℓ′} appears in ˜P ′
1
× P ′

2
and contributes

(3𝑛 + 1)−1 to 𝑅( ˜P ′
1
× P2).

• If P ′
2
separates the item 𝑏ℓ′ from 𝑎ℓ′′ , then the part {𝑏ℓ′} appears in ˜P ′

1
× P ′

2
and contributes

𝜀/(3𝑛 + 1) to 𝑅( ˜P ′
1
× P2). □

Corollary 4.8. If P ′
1
and P ′

2
are strategies for 𝑡1 and 𝑡2 that form a Nash equilibrium, then both

P ′
1
and P ′

2
isolate the items of {𝑏ℓ }𝑛ℓ=1 ∪ {𝑑} from each other.

Proof. Since P ′
1
is a part of a Nash equilibrium, it is not strictly dominated. Hence, by Lemma 4.7,

it must isolate the items of {𝑏ℓ }𝑛ℓ=1 ∪ {𝑑} from each other. The corollary holds also for P ′
2
by

symmetry. □

We are now ready to analyze the price of stability of DSP𝑛 .

Theorem 4.9. The price of stability of DSP𝑛 is at least (𝑛 + 1)/(𝑛𝜀 + 1). Hence, for 𝜀 = 1/𝑛2, the
price of stability of DSP𝑛 is at least 𝑛.

Proof. Consider an arbitrary Nash equilibrium (P ′
1
,P ′

2
) of DSP𝑛 . By Corollary 4.8, both P ′

1
and

P ′
2
must isolate the items of {𝑏ℓ }𝑛ℓ=1 ∪ {𝑑} from each other. However, every other item of 𝐼 must

share a part with 𝑑 in at least one of these partitions, and thus, every item of {𝑏ℓ }𝑛ℓ=1 has a singleton
part in P ′

1
× P ′

2
. Hence,

𝑅(P ′
1
× P ′

2
) = 𝑛𝜀 + 1

3𝑛 + 1 .

Combining the last observation with Lemma 4.4, we get that the price of stability of DSP𝑛 is at

least:

(𝑛 + 1)/(3𝑛 + 1)
(𝑛𝜀 + 1)/(3𝑛 + 1) =

𝑛 + 1
𝑛𝜀 + 1 . □

Note that Theorem 1.7 follows immediately from Theorem 4.9.

4.3 The Limitations of S are Inevitable
Theorem 1.7 asserts that the revenue of the best equilibrium can be about 𝑛 times worse than

the optimal revenue. This discouraging result raises the question of whether alternative payment

rules can improve the revenue guarantees of the auctioneer. Unfortunately, Shapley’s uniqueness

theorem answers this question negatively, assuming one requires the mechanism to have some

natural properties.

We consider a family of games of the type considered in Subsection 4.1. Formally, let F𝑚 denote

a family of𝑚-player games where each player 𝑡 has the same finite set 𝐴𝑡 of possible strategies

in all the games, one of which ∅𝑡 ∈ 𝐴𝑡 is called the null strategy of 𝑡 . Each game in the family is

determined by an arbitrary value function 𝑣 : 𝐴1 × 𝐴2 × . . . × 𝐴𝑚 → R, and each possible such

value function induces a game in F𝑚 . Recall that a mechanism 𝑀 = (Π1,Π2, . . . ,Π𝑚) is a set of
payments rules. In other words, if the players choose strategies 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, . . . , 𝑎𝑚 ∈ 𝐴𝑚 , then

the payment of player 𝑡 under mechanism𝑀 is Π𝑡 (𝑣, 𝑎1, 𝑎2, . . . , 𝑎𝑚).11

Theorem 4.10 (Uniqeness of Shapley Mechanism, cf. [19]). Let F𝑚 be a family of games as
described above. Then, the Shapley value mechanism S is the only mechanism satisfying the following
axioms:
(1) (Normalization) For every player 𝑡 , Π𝑡 (𝑎) = 0 whenever 𝑎𝑡 = ∅𝑡 .

11
Shapley’s theorem is stated for cooperative games where players in the coalition can reallocate their payments within the

coalition. In our non-cooperative setup, we assume side payments can be only introduced by the mechanism.
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(2) (Anonymity) If G𝑚 ∈ F𝑚 is a game with a strategy profile 𝑎∗ such that 𝑣 (𝑎) = 𝑣 (∅) (recall that
∅ denotes the strategy profile (∅1,∅2, . . . ,∅𝑚)) for every strategy profile 𝑎 ≠ 𝑎∗, then for every
strategy profile 𝑎 and player 𝑡 :

Π𝑡 (𝑎) =
{
0 if 𝑎𝑡 = ∅𝑡 ,

𝑣 (𝑎)−𝑣 (∅)
| {𝑡 ∈[𝑚] |𝑎𝑡≠∅𝑡 } | otherwise .

(3) (Additivity) If G𝑚,H𝑚 ∈ F𝑚 are two games with value functions 𝑣𝑔 and 𝑣ℎ , then Π
𝑣𝑔+𝑣ℎ
𝑡 (𝑎) =

Π
𝑣𝑔
𝑡 (𝑎) + Π

𝑣ℎ
𝑡 (𝑎) (where Π𝑣

𝑡 (𝑎) stands for the payment of player 𝑡 given strategy profile 𝑎 in the
game defined by the value function 𝑣).

We note that the second axiom (“Anonymity”) is ubiquitous in market design, and is typically

enforced bymarket regulations prohibiting discrimination among clients. Intuitively, this axiom says

that whenever there is only one strategy profile 𝑎∗ which produces a value other than 𝑣 (∅), then,
when 𝑎∗ is played, the mechanism is required to equally distribute the surplus 𝑣 (𝑎∗) − 𝑣 (∅) among

the participants playing a non-null strategy in 𝑎∗. Observe that violating this axiom would require

private contracts with (at least some of) the players (mediators). Implementing such contracts

defeats one of the main purposes of our mechanism, namely that it can be easily implemented in a

dynamic environment having an unstable mediators population.

The above theoremwas originally proved in a cooperative setting (where players may either join a

coalition or not), under slightly different axioms. The “anonymity” axiom of Theorem 4.10 replaces

the fairness and efficiency axioms of the original theorem, and is sufficient for the uniqueness proof

to go through in a non-cooperative setup such as the DSP game.

5 DISCUSSION
In this paper we have considered computational and strategic aspects of auctions involving third

party information mediators. Our main result for the computational point of view shows that it

is NP-hard to get a reasonable approximation ratio when the three parameters of the problem

are all “large”. For the parameters 𝑛 and 𝑘 this is tight in the sense that there exists an algorithm

whose approximation ratio is good when either one of these parameters is “small”. However, we

do not know whether a small value for the parameter𝑚 allows for a good approximation ratio.

More specifically, even understanding the approximation ratio achievable in the case𝑚 = 2 is an

interesting open problem. Observe that the case𝑚 = 2 already captures (asymptotically) the largest

possible price of stability and price of anarchy in the strategic setup,
12
and thus, it is tempting to

assume that this case also captures all the complexity of the computational setup.

Unfortunately, most of our results, for both the computational and strategic setups, are quite

negative. The class of local experts we describe is a natural mediators class allowing us to bypass

one of these negative result and get a constant approximation ratio algorithm for the computational

setup. An intriguing potential avenue for future research is finding additional natural classes of

mediators that allow for improved results, either under the computational or the strategic setup.

We note that from a mathematical cleanness point of view, it seems natural to study in this context

the class of mediators having information about a particular attribute of each of the users in the

overall population. Such mediators, however, typically appear in practice as sub-divisions of the

auctioneer. Thus, it makes sense from an application point of view to consider further filtering of

their signals before communicating to the bidders; which brings us back to the single-mediator

setting discussed in previous work.

12
By Theorem 1.7 the price of stability can be as large as𝑂 (min{𝑘,𝑛}) even for two mediators, and Theorem 1.6 shows

that the price of anarchy cannot be larger than that for any number of mediators.
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Another possible direction for future research is to study an extension of our distributed setup

where bundling is replaced with randomized signaling (similarly to the works of [3] and [8] which

introduced randomized signaling into the centralized model of [11]). In the centralized model

it turned out that finding the optimal randomized signaling is easier then finding the optimal

bundling [3, 8], which is counterintuitive since randomized signaling generalize bundling. Hence,

one can hope that randomized signaling might also mitigate some of our inapproximability results.
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