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Prediction

Prediction algorithms are extensively studied in the ML literature.

For commercial companies - another tool that can be exploited to 
increase revenue.

Current work assume that prediction is done in isolation!

Do not address market competition.



Motivation

Users are interested in the selling values of their apartments.

Alice offers free prediction services for this purpose on her website.

Assumption: predictions do not affect the prices.

After an apartment is sold, its true value is revealed.

Satisfied users translate to revenue for Alice (user traffic, future 
services, recommendation etc.).
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Illustration (2)
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1$ for Bob

Alice is the 
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1$ for Alice

Both are 
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Illustration (2)

Apartment size

Se
lli

n
g 

va
lu

e

Bob

Alice

:10.5$

:6.5$

Equilibrium?



Informal Model (PAC-like)

A distribution over instances, labels and thresholds. 

𝑁 players, play predictive function 𝑥 ↦ 𝑦 (full generality)

A point (𝑥, 𝑦, 𝑡) is satisfied with a prediction ො𝑦 = ො𝑦(𝑥) if 
𝑦 − ො𝑦 ≤ 𝑡.

Several satisfying predictions → u.a.r.

Player payoff: the expected number of points she satisfies.

The underlying distribution is unknown.

Question: How to find an approximate PNE on the distribution?



PAC Learning

A sample ERM UC Generalized w.h.p.ERM
Empirical PNE



Results (1)

Proposition: Every empirical game possesses at least one PNE.

A sample Empirical PNE Generalized w.h.p.



Results (2)

Proposition: After 𝑂 𝑚𝑁 log𝑁 iterations of any better response 
dynamics, an empirical PNE is obtained.

A sample Empirical PNE Generalized w.h.p.



Results (3)

Lemma: Given a sample of size 𝑝𝑜𝑙𝑦 Τ1 𝜖 , 𝑁, log Τ1 𝛿 , σ𝑖=1
𝑁 𝑑𝑖 , any 

player’s payoff under any profile is not too distant from its empirical 
counterpart, w.h.p.

A sample Empirical PNE Generalized w.h.p.



Meta Algorithm

1. Set 𝑚 = 𝑝𝑜𝑙𝑦
1

𝜖
, 𝑁, log

1

𝛿
, σ𝑖=1

𝑁 𝑑𝑖 .

2. Sample 𝒮 from 𝒟𝑚.

3. Execute any better-response dynamics on the empirical game until 
convergence, and obtain a strategy profile 𝒉.

4. Return 𝒉.

Theorem: The algorithm returns an 𝜖 −PNE w.p. of at least 1 − 𝛿.

“Meta”?

• Linear best-response oracle, based on BP and Tennenholtz, NIPS 2017.



Simulations: Two-player games





Related Work

Competing optimization algorithms:
• Dueling Algorithms (Immorlica et al., 2011).

Competing solution concepts for machine learning tasks:
• Competing schedulers (Ashlagi et al., 2010), (Ashlagi et al., 2013).
• Competing bandits (Mansour at el., 2018).
• Online prediction (Schrijvers and Roughgarden, 2017).
• Clustering/segmentation – (Hotelling 1929).

Strategic input: 
• Strategyproof classification/regression. (Dekel et al. 2008 , Meir et al. 2012, Chen et 

al. 2018).
• Segmentation (Nissim et al. 2018).

Prediction with several entities:
• Collaborative (Blum et al. 2017), competitive (BP and Tennenholtz 2017).



Extension: Direct Attraction

Variant: each user grants 1$ to the player with the most accurate 
prediction (breaking ties uniformly).
• In the spirit of Dueling Algorithms (Immorlica et al., 2011).

Empirical PNE may not exist!

Credit: Yakov Babichenko



Future work

Best response oracles.

Variant: direct attraction
• In the spirit of Dueling Algorithms (Immorlica et al., 2011).

Different monitoring: players are not aware/partially aware of the 
strategies of the other players.
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