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Given a directed forest-graph, a probabilistic selection mechanism is a probability distribution over the vertex

set. A selection mechanism is incentive-compatible (IC), if the probability assigned to a vertex does not change

when we alter its outgoing edge (or even remove it). The quality of a selection mechanism is the worst-case

ratio between the expected progeny under the mechanism’s distribution and the maximal progeny in the

forest. In this paper we prove an upper bound of 4/5 and a lower bound of 1/ln 16 ≈ 0.36 for the quality

of any IC selection mechanism. The lower bound is achieved by two novel mechanisms and is a significant

improvement to the results of Babichenko et al. [7]. The first, simpler mechanism, has the nice feature of

generating distributions which are fair (i.e., monotone and proportional). The downside of this mechanism is

that it is not exact (i.e., the probabilities might sum-up to less than 1). Our second, more involved mechanism,

is exact but not fair. We also prove an impossibility for an IC mechanism that is both exact and fair and has a

positive quality.

CCS Concepts: • Theory of computation→ Algorithmic mechanism design.

Additional Key Words and Phrases: incentive compatibility; selection mechanisms

ACM Reference Format:
Yakov Babichenko, Oren Dean, and Moshe Tennenholtz. 2020. Incentive-Compatible Selection Mechanisms

for Forests. In Proceedings of the 21st ACM Conference on Economics and Computation (EC ’20), July 13–17, 2020,
Virtual Event, Hungary. ACM, New York, NY, USA, 21 pages. https://doi.org/10.1145/3391403.3399456

1 INTRODUCTION
Incentive-compatible selection mechanisms have been studied before in different settings (see

Section 1.1). The motivation for this research stems from many scenarios in which agents ap-

prove/disapprove each other, and an administrator is required to select one or more ‘worthy’ agents.

To name a few examples:

(1) The selection of a prize winner in an academic field according to peer reviews.

(2) The selection of an influential user in a social network.

(3) Web search engines select central web-pages by links from other web-pages.

In all of the above examples, the agents have an incentive to misreport their true appreciation or

interest in others, if that will lead to their own selection. An incentive-compatible (IC) selection
mechanism, is a selection mechanism that guarantees that the selection of an agent is independent

of his own out-links. A probabilistic selection mechanism assigns each agent a selection-probability.

The requirement of IC for a probabilistic mechanism is that the probability assigned to an agent

will be independent of his own out-links. Selection mechanisms differ in their purpose—some try to
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maximize a specific graph theoretic measure of the selected agent (most commonly the in-degree)

while others guarantee some set of properties (e.g., an agent with a unanimous support is selected,

an agent with no support is not selected).

In this paper we search for IC, probabilistic selection mechanisms that maximize the expected

progeny
1
of the selected agent. We assume that the given network has the structure of a forest; that

is, the maximal out-degree is one, and there are no cycles. This network structure arises naturally in

cases where the agents join the network sequentially and are allowed to connect to at most one of

the users who preceded them. For example, if the agents are customers and a link from customer 𝑥 to

customer 𝑦 denotes that customer 𝑦 is the one who referred/recommended the service to customer

𝑥 , then we get a structure of a forest. In this example, selecting a customer with high progeny

means that we are interested in a customer which brought many new customers, both directly

(his own sons in the forest) and indirectly (deeper levels in his sub-tree). This example is closely

related to mechanisms of multi-level marketing payments (e.g., Abbassi and Misra [1], Babaioff

et al. [5], Douceur and Moscibroda [11], Emek et al. [12]).

There are two additional properties of a probabilistic selection mechanism which we consider

as desirable. The first is that with probability 1 the mechanism selects an agent (i.e., that the

sum of probabilities in any forest is exactly 1). A mechanism with this property is called an exact
mechanism. The second property is that the mechanism will be fair. The requirement of fairness is

twofold: (a) monotonicity: higher progeny leads to higher selection-probability; (b) proportionality:

the ratio between the selection-probabilities of two agents depends only on their progenies. See

Definition 4 for a formal definition of these notions.

We present two novel IC probabilistic selection mechanisms with a similar worst-case expected

progeny-approximation of about 1/3. The first mechanism is fair, but not exact. The second mech-

anism is exact, but not fair. We then prove an impossibility theorem which states that there are

no IC selection mechanisms that are both exact and fair, and with a positive expected progeny-

approximation.

1.1 Related work and our contribution
Broadly speaking, our paper relates to the track of works on approximate mechanism design without

money (Procaccia and Tennenholtz [17], Caldarelli [10], Babaioff et al. [6]). The goal in these works

is to offer mechanisms that provide strategy-proof solutions to problems that have an exact optimal

solution which is not strategy-proof (e.g., facility allocation). Naturally, strategyproofness comes at

the expense of optimality, and the challenge is to bound this loss.

Of those papers who deal with the problem of IC selection in networks, the most similar to ours is

Babichenko et al. [7]. In that paper, the authors offer several IC probabilistic selection mechanisms

for trees, forests, and acyclic graphs. They offer a mechanism for forests for which the ratio between

the expected progeny and the maximal progeny is proportional to 𝑛/𝑃∗𝑟 ; 𝑃∗
being the maximal

progeny, 𝑛 the number of agents and 𝑟 the number of roots in the forest. Clearly this ratio is not

bounded from below by any positive number.
2
Hence, our two mechanisms which guarantee a

ratio of at least 1/3 for any forest are a substantial improvement.

The work in Alon et al. [2] was the first to present the model of IC selection mechanisms in

networks, striving to optimize the sum of in-degrees of the selected set. They proved a strong

impossibility for an IC deterministic mechanism and offered a probabilistic mechanism based on

the idea to randomly partition the agents to voters and candidates. This mechanism does not give

1
The progeny of a vertex in a network is the number of vertices with paths to this vertex. In a forest, the progeny is the

order of the subtree underneath the vertex. See the formal definition in the beginning of Section 2.

2
For instance, in a forest with one star of order 𝑛/2 and 𝑛/2 singleton vertices, this yields a ratio of 4/𝑛, which goes to zero

as 𝑛 goes to infinity.



a good bound on the progeny of the selected agent. Further works with better mechanisms or

slightly different setting can be found in Bjelde et al. [8], Bousquet et al. [9], Fischer and Klimm

[13], Kurokawa et al. [15].

Several works have offered an axiomatic approach to the problem. In these works the authors define

a set of desirable axioms and investigate the possibility/impossibility of mechanisms that fulfil

maximal subsets of these axioms. To name a few examples of these works, Aziz et al. [4], Holzman

and Moulin [14], Mackenzie [16].

In [3] the authors considered the possibility of complete ranking mechanisms under certain axioms.

Our contribution and paper organization. In this paper we investigate IC, probabilistic selection

mechanisms for forests. We measure the quality of a mechanism as the worst-case ratio between

the expected progeny of the selection and the maximal progeny in the forest. The exact model and

the formal definitions are in Section 2. Maximizing for the progeny is significantly harder than

maximizing for the in-degree, since the dependence on a single edge is potentially much larger. The

mechanism offered in Babichenko et al. [7] gives a positive bound on the progeny approximation

provided the trees in the forest are balanced (the average of their orders is not too far from the

maximal order). In Section 3 we suggest two novel mechanisms with a progeny approximation of

about 1/3 for all forests. None of these mechanisms is superior to the other; each has a desirable

property not present in the other—one of them is fair and the other is exact.

2 PRELIMINARIES
A directed forest is an acyclic, directed graph with maximal out-degree 1. Let 𝑁 be a set of 𝑛

vertices, and let 𝐹 (𝑁, 𝐸) be a directed forest on 𝑁 . The roots of 𝐹 are those vertices which do not

have an out-edge; we denote these vertices by 𝑅(𝐹 ). For a vertex 𝑥 ∈ 𝑁 , we denote by 𝑇 (𝑥 ; 𝐹 )
the subtree of 𝐹 in which 𝑥 is the root. We denote by 𝑃 (𝑥 ; 𝐹 ) = |𝑇 (𝑥 ; 𝐹 ) |, the progeny of 𝑥 , and by

𝑃∗ (𝐹 ) = max

𝑥 ∈𝑁
𝑃 (𝑥 ; 𝐹 ) = max

𝑥 ∈𝑅 (𝐹 )
𝑃 (𝑥 ; 𝐹 ), the maximal progeny in 𝐹 .

We will often use the structure of a star in our proofs. A 𝑘-star is a tree with one centre vertex

(the root) and 𝑘 − 1 leaf vertices. When we speak of an isolated vertex we mean a vertex with no

out-edge and no in-edges.

Let F 𝑁
be the family of all directed forests on 𝑁 . A selection mechanism is a function M :

𝑁 × F 𝑁 → [0, 1] such that for every 𝐹 ∈ F 𝑁
,

∑
𝑥 ∈𝑁

M(𝑥, 𝐹 ) ≤ 1. We abuse notation and denote a

series of mechanisms {M}∞|𝑁 |=1 by justM. We think ofM(·, 𝐹 ) as a probability distribution over 𝑁 ,

with the possibility of no-selection. The probability of no selection is M(∅, 𝐹 ) = 1 − ∑
𝑥 ∈𝑁

M(𝑥, 𝐹 ).
When the forest is obvious from the context, we might omit the extra parameter everywhere and

just write: 𝑅, 𝑃∗,𝑇 (𝑥), 𝑃 (𝑥),M(𝑥).
In this paper we look at mechanisms which are Incentive-Compatible (IC). Incentive-compatibility

means that for any two forests 𝐹, 𝐹 ′ ∈ F 𝑁
and a vertex 𝑥 ∈ 𝑁 such that 𝐹, 𝐹 ′

differ only on

the out-edge of 𝑥 , M(𝑥 ; 𝐹 ) = M(𝑥 ; 𝐹 ′). Denote by 𝐹𝑥 the forest we get from 𝐹 by removing the

out-edge of 𝑥 (if any).

Claim 1. Mechanism M is Incentive-Compatible if and only if for any forest 𝐹 and for any vertex
𝑥 ∈ 𝑁 ,M(𝑥 ; 𝐹 ) = M(𝑥 ; 𝐹𝑥 ).

Proof. IfM is IC, then by definitionM(𝑥 ; 𝐹 ) = M(𝑥 ; 𝐹𝑥 ) for any 𝑥, 𝐹 . On the other hand, if this

condition holds, then for any 𝑥 and 𝐹, 𝐹 ′
that differ only on the out-edge of 𝑥 ,M(𝑥 ; 𝐹 ) = M(𝑥 ; 𝐹𝑥 )

and M(𝑥 ; 𝐹 ′) = M(𝑥 ; 𝐹 ′
𝑥 ). But 𝐹𝑥 = 𝐹 ′

𝑥 (since 𝐹, 𝐹 ′
differ only on the out-edge of 𝑥), and hence

M(𝑥 ; 𝐹 ) = M(𝑥 ; 𝐹 ′), which means that M is IC. �



A nice consequence of this view of incentive compatibility is that in order to define an IC

mechanism, it is enough to define the probabilities assigned to the roots in every forest.

Corollary 2. LetM𝑅 be a mechanism that distributes probabilities on the roots of every forest.
Then there is at most one way to extend it to an IC selection mechanism.

Proof. Let M be an IC mechanism that extends M𝑅 . For any 𝐹, 𝑥 , if 𝑥 is a root then M(𝑥 ; 𝐹 ) =
M𝑅 (𝑥 ; 𝐹 ). Otherwise, by Claim 1, M(𝑥 ; 𝐹 ) = M(𝑥 ; 𝐹𝑥 ) = M𝑅 (𝑥 ; 𝐹𝑥 ) since 𝑥 is a root in 𝐹𝑥 . In any

case, the probability of 𝑥 is determined by M𝑅 . �

Not every roots-distribution mechanism is extendible to an IC selection mechanism. For example,

the mechanism that always gives the root with highest progeny (with lexicographic tie-breaking)

a probability of 0.6 leads to an IC extension which distributes more than 1 already in a forest

with a single edge.
3
When we present our two mechanisms in Section 3 we will first define their

roots-probabilities and then prove that their IC extensions are well-defined.

Of course, there are many IC mechanisms. For instance, the empty mechanism which gives a

probability of 0 to all vertices in any forest, or the uniform mechanism which gives a probability

of 1/𝑛 to all vertices in any forest. Our goal is to find mechanisms with a good approximation

for the maximal progeny, in the worst-case. In this sense, the optimal mechanism is the one

which gives a probability of 1 to the vertex with the highest progeny. This mechanism cannot

be IC, though. Take for instance the two forests in Figure 1. The IC requirement implies that

M(𝑎; 𝐹1) = M(𝑎; 𝐹2). However, in 𝐹2, 𝑃 (𝑎; 𝐹2) = 3 = 1

2
𝑃 (𝑏; 𝐹2). This simple example shows that

we cannot avoid distributing at least part of the probability to vertices with progeny at most half of

the highest progeny.

𝑎 𝑏

𝐹1

𝑎 𝑏

𝐹2

Fig. 1

We define the quality of mechanism M for the forest 𝐹 to be its normalized expected progeny:

𝑄 (M; 𝐹 ) :=
E[𝑃 (𝑥)]𝑥∼M(𝐹 )

𝑃∗ (𝐹 ) =

∑
𝑥 ∈𝑁 M(𝑥 ; 𝐹 ) · 𝑃 (𝑥 ; 𝐹 )

𝑃∗ (𝐹 ) .

Then the quality of the mechanism is:

𝑄 (M) = lim

|𝑁 |→∞
min

𝐹 ∈F𝑁
𝑄 (M; 𝐹 ).

In Section 3 we will show two IC mechanisms for which𝑄 (M) ≥ 1/3. These are subtle mechanisms,

as even coming up with a mechanism with a positive quality is non-trivial. Clearly, for any

mechanism, 𝑄 (M) ≤ 1. In the following proposition we bound it away from 1.

Proposition 3. For any IC mechanism M, 𝑄 (M) ≤ 4/5.

Proof. Consider the two forests on two vertices in Figure 2.

3
If 𝑥 is the first vertex in the lexicographic order, then in the forest with the single edge (𝑥, 𝑦) for any 𝑦, both 𝑥 and 𝑦 get a

probability of 0.6.



𝑎𝛼

𝑏𝛼

𝐹1

𝑎𝛽

𝑏𝛼

𝐹2

Fig. 2

To the left of each vertex we have denoted its probability by a generic IC mechanism. Notice

that we have used a symmetry assumption when we assumed that in 𝐹1 the vertices get equal

probabilities. In the last paragraph of this section, we explain why symmetry may always be

assumed without loss of generality. We calculate the performance of the mechanism for each of

these forests.

𝑄 (M; 𝐹1) = 2𝛼,

𝑄 (M; 𝐹2) =
2𝛽 + 𝛼

2

= 𝛽 + 𝛼

2

.

The quality ofM is at most the minimum of these two expressions. Clearly, we may replace 𝛽 with

its highest possible value, 1 − 𝛼 , to get,

𝑄 (M) ≤ min {2𝛼, 1 − 𝛼/2} .
Choosing 𝛼 which gives the highest minimum, we find that 𝛼 = 2/5 and 𝑄 ≤ 4/5. We remark that

we can achieve this bound for any 𝑛. We just need to replace the two vertices in Figure 2 with two

𝑛/2-stars. �

There are two additional propertieswhichwe consider as desirable. The first is that themechanism

will be “fair”. It would be nice if we could require that the probability of a vertex only depends on

its progeny. It is not hard to see that this notion of fairness is too strong. For example, start with the

empty forest with 𝑛 vertices. Then all the vertices get the same probability of 1/𝑛. If we add a single
edge from 𝑥 to 𝑦, then by IC 𝑥 still gets 1/𝑛, and by fairness, everyone other than 𝑦 should get just

like 𝑥 . This leaves a probability of at most 1/𝑛 for 𝑦. Using induction, we can see that for any forest

with a single star, the probability of the centre vertex is at most 1/𝑛, which implies an infinitely

decaying quality when 𝑛 goes to infinity. We suggest the following weaker notion of fairness.

Definition 4. MechanismM is fair, if ∀𝐹 ∈ F 𝑁 and ∀𝑥,𝑦 ∈ 𝑅(𝐹 ),
a) (monotonicity) if 𝑃 (𝑥) > 𝑃 (𝑦), then M(𝑥 ; 𝐹 ) ≥ M(𝑦; 𝐹 );
b) (proportionality) the ratio M(𝑥 ; 𝐹 )/M(𝑦; 𝐹 ) depends only on 𝑃 (𝑥 ; 𝐹 ), 𝑃 (𝑦; 𝐹 ).

Monotonicity means that the root of a larger sub-tree gets at least the probability of the root of a

smaller sub-tree. Proportionality implies in particular that the ratio M(𝑥)/M(𝑦) is not influenced
by edges outside of 𝑇 (𝑥),𝑇 (𝑦), nor by the internal structure of 𝑇 (𝑥),𝑇 (𝑦). In order for the ratio

M(𝑥)/M(𝑦) to be well-defined, we must also require that the mechanism is positive (i.e., that all

the vertices get a positive probability). We can relax this requirement by taking the closure of all

positive, fair mechanisms. More precisely, let {M𝑖 }𝑖∈N be an infinite series of mechanisms. We say

that {M𝑖 } converges to mechanismM if for every forest 𝐹 ∈ 𝑁 and every vertex 𝑥 ∈ 𝑁 ,M(𝑥 ; 𝐹 ) =
lim

𝑖→∞
M𝑖 (𝑥 ; 𝐹 ). We say that M is fair in limit if there is a series of positive, fair mechanisms which

converge toM. If mechanismM is fair in limit, then it can be approximated with a fair mechanism.

The second desirable feature is that of being exact.



Definition 5. MechanismM is exact if for every forest 𝐹 ∈ F 𝑁 , M(∅, 𝐹 ) = 0.

In other words, exactness means that the probabilities assigned by M always sum up to exactly

1. A mechanism which is not exact can only improve its quality, if it will distribute the extra

probability; however, the IC requirement might prevent it from doing so.

Let 𝑥,𝑦 ∈ 𝑁 be such that there is an automorphism of 𝐹 that takes 𝑥 to𝑦. A symmetric mechanism

is one for which, under these conditions,M(𝑥 ; 𝐹 ) = M(𝑦; 𝐹 ). Any mechanism can be converted

to a symmetric mechanism by picking a random automorphism of 𝐹 before using the original

mechanism. If the original mechanism was IC/fair/exact and with quality 𝑄 , then the symmetric

mechanism will possess these features as well. This is why we allowed ourselves to assume in

the proof of Proposition 3 that a general mechanism is symmetric. This observation will also be

useful to us in the proof of our impossibility theorem (Section 4). Another implication is that our

two mechanisms, which are not symmetric, can be made symmetric without hurting any of their

properties.

2.1 Conventions and notations
As in previous figures, we use circles to denote the vertices in our diagrams. The label of the vertex

is marked inside the circle. In the forthcoming diagrams, a 𝑘-star is represented by a diamond, with

‘𝑘’ denoted below it. The label inside the diamond is for the centre of the star, and an edge between

two diamonds translates to an edge between the centre vertices of the corresponding stars. For

example, the tree in Figure 3 is equivalent to 𝐹2 in Figure 1.

𝑎

3

𝑏

3

Fig. 3

When we draw a forest we might add dashed lines and vary the length of the edges so that every

vertex is positioned in a distance from the left which is proportional to its progeny. For example,

looking at the forest in Figure 4 it is clear, both graphically and numerically, that 𝑃 (𝑥1) < 𝑃 (𝑦1) <
𝑃 (𝑥2) and that 𝑃 (𝑥3) = 𝑃 (𝑦4). We emphasize that the dashed lines are not part of the description of

the forest and serve only for visualization purposes.

𝑥1

4

𝑥2

2

𝑥3

4

𝑦1

5

𝑦2

3

𝑦3 𝑦4

Fig. 4

3 TWOMECHANISMS
In this section we present our two novel mechanisms. To that end we use a few simple observations.

Notice that the progeny of any vertex is exactly one more than the sum of progenies of its direct

sons. This implies the following.



Observation 6.

a) The progeny of any vertex 𝑥 is the highest in its sub-tree, 𝑇 (𝑥); the highest progeny in the forest
is achieved by at least one of the roots.

b) The highest progeny in 𝑇 (𝑥)\{𝑥} is achieved by at least one of the direct sons of 𝑥 .
c) Let 𝑦, 𝑧 ∈ 𝑇 (𝑥)\{𝑥} be two different vertices. Assume that 𝑃 (𝑦) ≥ 1

2
𝑃 (𝑥), 𝑃 (𝑧) ≥ 1

2
𝑃 (𝑥). Then

there must be a path between 𝑦 and 𝑧.4 If the path is from 𝑦 to 𝑧, then 𝑃 (𝑧) ≥ 𝑃 (𝑦) + 1, and vice
versa.

We add the notation 𝑃 (𝑥) = max

𝑦∈𝑇 (𝑥)\{𝑥 }
𝑃 (𝑦), for the highest progeny in 𝑇 (𝑥), excluding 𝑥 .

3.1 A fair mechanism
For our first mechanism we need to assume a total ordering of the vertices by their progenies. We

achieve this ordering by breaking ties lexicographically. Hence we will write 𝑃 (𝑥) ≻ 𝑃 (𝑦) ⇐⇒
(𝑃 (𝑥) > 𝑃 (𝑦)) ∨ ((𝑃 (𝑥) = 𝑃 (𝑦)) ∧ (𝑥 < 𝑦)). Let 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟 |𝑅 |} be a decreasing ordering

of the roots by ≻, i.e., 𝑃 (𝑟𝑖 ) ≻ 𝑃 (𝑟𝑖+1) for all 𝑖 . We denote by 𝑟𝑖 (𝐹 ′) the 𝑖-th root in the forest 𝐹 ′
.

Remember that we denote by 𝑃∗ = 𝑃 (𝑟1) the highest progeny in 𝐹 .

The idea behind our first mechanism is first to recognize the subset of vertices which will get a

positive probability (i.e., the support of the mechanism). We need to make sure that this subset is

IC and contains only vertices with high progeny. The second step is to set IC probabilities on this

subset such that the probabilities are high enough to get a good quality, but not too high as to not

distribute more than 1. Specifically, we define the set

𝐴 := {𝑥 ∈ 𝑁 : 𝑥 = 𝑟1 (𝐹𝑥 )}.
That is, 𝐴 is the set of vertices 𝑥 such that in the graph 𝐹𝑥 , 𝑥 has the highest progeny (including

tie-breaking). Notice that this definition is incentive-compatible in the sense that 𝑥 ∈ 𝐴(𝐹 ) ⇐⇒
𝑥 ∈ 𝐴(𝐹𝑥 ), which means that the out-edge of 𝑥 does not affect the decision of whether or not it

belongs to 𝐴.

We use Corollary 2 and define our mechanism as the IC extension of a roots-distribution mecha-

nism. It is not hard to see that if 𝑟1 is the only root with a positive probability, we get a mechanism

for which the support is precisely the set 𝐴 (this can be observed directly from the definition of 𝐴).

We thus define the following roots-distribution:

M𝑓 (𝑟1) =


1

2

, |𝐴| = 1

1

2

log
2

𝑃 (𝑟1)
𝑃 (𝑟1)

, |𝐴| ≥ 2

∀𝑟 ∈ 𝑅\{𝑟1}, M𝑓 (𝑟 ) = 0,

and we extend it to an IC mechanism which we also denote M𝑓 .

Before proving the exact properties of M𝑓 (Theorem 11), we demonstrate its workings with a

couple of examples. Example 7 is intended to give the intuition that M𝑓 is well-defined; i.e.,

that

∑
𝑥 ∈𝐴 M𝑓 (𝑥) ≤ 1. Example 8 is intended to give the intuition that

∑
𝑥 ∈𝐴 M𝑓 (𝑥) ≥

1

2

. Since

∀𝑥 ∈ 𝐴, 𝑃 (𝑥) ≥ 1

2
𝑃∗
,
5
this readily implies that 𝑄 (M𝑓 ) ≥ 1/4 (though in Theorem 11 we prove a

better bound).

4
Otherwise, there is a vertex 𝑤 ∈ 𝑇 (𝑥) with a path 𝑃𝑦 from 𝑦 to 𝑤 and a path 𝑃𝑧 from 𝑧 to 𝑤 and 𝑃𝑦 ∩ 𝑃𝑧 = {𝑤 }. This
implies that 𝑃 (𝑤) ≥ 1 + 𝑃 (𝑦) + 𝑃 (𝑧) ≥ 1 + 𝑃 (𝑥) , in contradiction to 𝑎) .
5
If 𝑃 (𝑥) < 1

2
𝑃∗

then in 𝐹𝑥 there is a tree of order 𝑃∗ − 𝑃 (𝑥) > 𝑃 (𝑥) and 𝑥 cannot be the root with the highest progeny.



Example 7. Consider the forest in Figure 5. If we remove the out-edge of 𝑏, we get the forest 𝐹𝑏 ,
in which 𝑏 has the highest progeny. That is, 𝑏 = 𝑟1 (𝐹𝑏). In 𝐹𝑏 there is no other vertex which can be

the root of the largest tree when we remove its out-edge, hence 𝐴(𝐹𝑏) = {𝑏}. Thus, M𝑓 (𝑏) =
1

2

. For

1 ≤ 𝑖 ≤ 4, 𝑐𝑖 = 𝑟1 (𝐹𝑐𝑖 ) and 𝐴(𝐹𝑐𝑖 ) = {𝑏, 𝑐1, . . . , 𝑐𝑖 }. Hence,M𝑓 (𝑐𝑖 ) =
1

2

log
2

𝑃 (𝑐𝑖 )
𝑃 (𝑐𝑖 )

=
1

2

log
2

6 + 𝑖
6 + 𝑖 − 1

.

We now get that ∑
𝑥 ∈𝑁

M𝑓 (𝑥) =
1

2

+ 1

2

4∑
𝑖=1

log
2

6 + 𝑖
6 + 𝑖 − 1

=
1

2

+ 1

2

log
2

10

6

< 1.

𝑎

4

𝑏

2

𝑐1 𝑐2 𝑐3 𝑐4

𝑑

5

Fig. 5

The thing to notice in Example 7 is that the last vertex in 𝐴 gets a probability of at most 1/2, and

the sum of probabilities for the rest of the vertices is at most

1

2

log
2

𝑃∗

1

2
𝑃∗ =

1

2

. Hence the mechanism

is well-defined.

Example 8. In Figure 6,M𝑓 (𝑎) = 0 since in the forest 𝐹𝑎 it is only a second-highest root. In 𝐹𝑏 , 𝑏 is
the highest root and the second highest root is 𝑑 with progeny 3. Although vertex 𝑎 is not in 𝐴, it would

be after we remove the out-edge of 𝑏. Thus, 𝐴(𝐹𝑏) = {𝑏, 𝑎}, and M𝑓 (𝑏) =
1

2

log
2

𝑃 (𝑏)
𝑃 (𝑎) =

1

2

log
2

7

4

.

Similarly, we find that M𝑓 (𝑐) =
1

2

log
2

9

7

and M𝑓 (𝑑) =
1

2

log
2

10

9

. Hence,∑
𝑥 ∈𝑁

M𝑓 (𝑥) =
1

2

log
2

10

4

>
1

2

.

𝑎

4

𝑏

3

𝑐

2

𝑑

Fig. 6

In Example 8 no vertex gets the fixed probability of 1/2. This happens because vertex 𝑏, which is

the last vertex in 𝐴, is not the only vertex in 𝐴(𝐹𝑏). In this case the second vertex in 𝐴(𝐹𝑏) (i.e.,
vertex 𝑎) has a progeny lower than

1

2
𝑃∗ (𝐹 ). Hence the total probabilities in this kind of forests is at

least

1

2

log
2

𝑃∗

1

2
𝑃∗ =

1

2

.

Proceeding to a formal analyse of mechanism M𝑓 , we first give an alternative definition of the

set 𝐴 (Claim 9) and an explicit description of the mechanism’s distribution (Lemma 10).



Claim 9. The following is an alternative definition of 𝐴:

𝐴 = {𝑥 ∈ 𝑇 (𝑟1) : 𝑃 (𝑥) ≻ max{ 1
2
𝑃 (𝑟1), 𝑃 (𝑟2)}}.6

Proof. If 𝑥 ∉ 𝑇 (𝑟1) then clearly 𝑥 is not in the largest tree in 𝐹𝑥 , and 𝑥 ∉ 𝐴. If 𝑥 ∈ 𝑇 (𝑟1) and
𝑃 (𝑥) ≺ 1

2
𝑃 (𝑟1), then in 𝐹𝑥 , 𝑃 (𝑟1 (𝐹 ); 𝐹𝑥 ) = 𝑃∗−𝑃 (𝑥) ≻ 𝑃 (𝑥), which means that 𝑥 ≠ 𝑟1 (𝐹𝑥 ). Likewise,

if 𝑥 ∈ 𝑇 (𝑟1) and 𝑃 (𝑥) ≺ 𝑃 (𝑟2) then 𝑃 (𝑟2 (𝐹 ); 𝐹𝑥 ) = 𝑃 (𝑟2 (𝐹 ); 𝐹 ) ≻ 𝑃 (𝑥 ; 𝐹 ) = 𝑃 (𝑥 ; 𝐹𝑥 ), and again

𝑥 ≠ 𝑟1 (𝐹𝑥 ).
For the other direction, assume that 𝑥 ∈ 𝑇 (𝑟1) and 𝑃 (𝑥) ≻ max{ 1

2
𝑃 (𝑟1), 𝑃 (𝑟2)}. Assume for

contradiction that there is a vertex 𝑦 such that 𝑃 (𝑦; 𝐹𝑥 ) ≻ 𝑃 (𝑥 ; 𝐹𝑥 ). If 𝑦 ∉ 𝑇 (𝑟1) then 𝑃 (𝑦; 𝐹𝑥 ) ≤
𝑃 (𝑟2; 𝐹 ) which is a contradiction. If 𝑦 ∈ 𝑇 (𝑟1) then by Observation 6 there is a path between 𝑥 and

𝑦. Since 𝑃 (𝑦; 𝐹 ) ≥ 𝑃 (𝑦; 𝐹𝑥 ) ≻ 𝑃 (𝑥), this path is from 𝑥 to 𝑦; but then 𝑃 (𝑦; 𝐹𝑥 ) = 𝑃 (𝑦) − 𝑃 (𝑥) ≼
1

2
𝑃 (𝑟1) ≺ 𝑃 (𝑥), which is again a contradiction. �

From Claim 9 and Observation 6 we conclude that 𝐴 is a path. Denote 𝐴 = {𝑟1 = 𝑎 |𝐴 |, . . . , 𝑎1}.

Lemma 10. The support ofM𝑓 (𝐹 ) is 𝐴(𝐹 ). Furthermore,

a) If |𝐴| = 1 thenM𝑓 (𝑟1) =
1

2

.
b) If |𝐴| = 𝑘 ≥ 2 then

1 < ∀𝑖 ≤ 𝑘, M𝑓 (𝑎𝑖 ) =
1

2

log
2

𝑃 (𝑎𝑖 )
𝑃 (𝑎𝑖−1)

,

1

2

log
2

2𝑃 (𝑎1)
𝑃∗ ≤ M𝑓 (𝑎1) ≤

1

2

.

Proof. The fact that supp(M𝑓 ) = 𝐴 is immediate from the definitions of 𝐴 andM𝑓 ; and so is

claim 𝑎).
Suppose that 𝑘 ≥ 2. Since 𝐴 is a path, for any 2 ≤ 𝑖 ≤ 𝑘 , 𝑎𝑖−1 is the vertex with the largest progeny

in 𝑇 (𝑎𝑖 )\{𝑎𝑖 }. Clearly this is still true in 𝐹𝑎𝑖 , hence 𝑃 (𝑎𝑖−1) = 𝑃 (𝑎𝑖 ; 𝐹𝑎𝑖 ). From the definition of M𝑓

we get thatM𝑓 (𝑎𝑖 ) = M𝑓 (𝑎𝑖 ; 𝐹𝑎𝑖 ) =
1

2

log
2

𝑃 (𝑎𝑖 )
𝑃 (𝑎𝑖 ; 𝐹𝑎𝑖 )

=
1

2

log
2

𝑃 (𝑎𝑖 )
𝑃 (𝑎𝑖−1)

.

For the lower bound onM𝑓 (𝑎1), notice that 𝑃 (𝑎1) ≺ max{ 1
2
𝑃 (𝑟1), 𝑃 (𝑟2)}, otherwise we would have

had another vertex in𝐴. If 𝑃 (𝑎1) < max{𝑃∗−𝑃 (𝑎1), 𝑃 (𝑟2)}, then𝐴(𝐹𝑎1 ) = {𝑎1}, andM𝑓 (𝑎1) =
1

2

=

1

2

log
2

2𝑃∗

𝑃∗ ≥ 1

2

log
2

2𝑃 (𝑎1)
𝑃∗ .

7
If 𝑃 (𝑎1) ≥ max{𝑃∗ − 𝑃 (𝑎𝑘 ), 𝑃 (𝑟2)}, then M𝑓 (𝑎1) =

1

2

log
2

𝑃 (𝑎1)
𝑃 (𝑎1)

>

1

2

log
2

2𝑃 (𝑎1)
𝑃∗ .

8
For the upper bound, notice that if |𝐴| ≥ 2 then 𝑃 (𝑟1) ≥

1

2

𝑃∗
, hence the mechanism

never assigns a probability higher than 1/2 to a single vertex. �

We can now prove the main theorem for mechanism M𝑓 . The fact that M𝑓 is well-defined is an

easy corollary of Lemma 10 and the exact quality is proved by a standard analysis. To prove that

this mechanism is fair in limit we build a series of fair mechanisms that converge to our mechanism.

Theorem 11. Mechanism M𝑓 is well-defined, IC, fair (in limit), and with quality 𝑄 (M𝑓 ) ≥
1/ln 16 ≈ 0.36.

6𝑃 (𝑥) ≻ 1

2
𝑃 (𝑟1) ⇐⇒ ((𝑃 (𝑥) > 1

2
𝑃 (𝑟1)) ∨ ( (𝑃 (𝑥) = 1

2
𝑃 (𝑟1)) ∧ (𝑥 < 𝑟1)) .

7
This is the case with vertex 𝑏 in Example 7.

8
This is the case with vertex 𝑏 in Example 8.



Proof. The mechanism is IC by definition. If |𝐴| = 1 then only 𝑟1 has a positive probability of

M𝑓 (𝑟1) =
1

2

; and if |𝐴| = 𝑘 ≥ 2,∑
𝑥 ∈𝑁

M𝑓 (𝑥) =
𝑘∑
𝑖=1

M𝑓 (𝑎𝑖 ) ≤
1

2

𝑘∑
𝑖=2

log
2

𝑃 (𝑎𝑖 )
𝑃 (𝑎𝑖−1)

+ 1

2

=
1

2

log
2

𝑃∗

𝑃 (𝑎1)
+ 1

2

≤ 1

2

log
2

𝑃∗

1

2
𝑃∗ + 1

2

= 1,

which shows that this mechanism is well-defined. We turn to bound𝑄 (M𝑓 ). If |𝐴| = 1, then clearly

𝑄 (M𝑓 ; 𝐹 ) = 1/2. Suppose that |𝐴| ≥ 2. Using Lemma 10 we get,

E[𝑃 (𝑥)]𝑥∼M𝑓 (𝐹 ) >
1

2

𝑘∑
𝑖=2

𝑃 (𝑎𝑖 ) log2
𝑃 (𝑎𝑖 )
𝑃 (𝑎𝑖−1)

+ 1

2

𝑃 (𝑎1) log2
2𝑃 (𝑎1)
𝑃∗

=
1

2 ln 2

𝑘∑
𝑖=2

𝑃 (𝑎𝑖 )
∫ 𝑃 (𝑎𝑖 )

𝑃 (𝑎𝑖−1)

𝑑𝑧

𝑧
+ 1

2

𝑃 (𝑎1) log2
2𝑃 (𝑎1)
𝑃∗

≥ 1

2 ln 2

𝑘∑
𝑖=2

∫ 𝑃 (𝑎𝑖 )

𝑃 (𝑎𝑖−1)
𝑑𝑧 + 1

2

𝑃 (𝑎1) log2
2𝑃 (𝑎1)
𝑃∗

=
1

2 ln 2

𝑘∑
𝑖=2

(𝑃 (𝑎𝑖 ) − 𝑃 (𝑎𝑖−1)) +
1

2

𝑃 (𝑎1) log2
2𝑃 (𝑎1)
𝑃∗

=
1

2 ln 2

(
𝑃∗ − 𝑃 (𝑎1) + 𝑃 (𝑎1) ln

2𝑃 (𝑎1)
𝑃∗

)
=

𝑃∗

2 ln 2

(
1 + 𝑃 (𝑎1)

𝑃∗ ln

2𝑃 (𝑎1)
𝑒𝑃∗

)
.

Since the function 𝑧 ln(2𝑧/𝑒) is monotone increasing in the interval [0.5,1], we get that

E[𝑃 (𝑥)]𝑥∼M𝑓 (𝐹 ) ≥
𝑃∗

2 ln 2

(
1 + 1

2

ln

1

𝑒

)
=

𝑃∗

4 ln 2

,

as claimed.

It remains to show thatM𝑓 is fair (i.e., monotone and proportional). For any two vertices 𝑥,𝑦 ∈ 𝑅(𝐹 )
with 𝑃 (𝑥) > 𝑃 (𝑦), it must be that M𝑓 (𝑦) = 0, hence it is monotone. To see that it is proportional,

define for any 𝜖 > 0 the mechanism M𝜖 induced by the following roots-mechanism:

∀𝑟 ∈ 𝑅, M𝜖 (𝑟 ) = M𝑓 (𝑟1)𝜖𝑃
∗−𝑃 (𝑟 ) .

It is easy to see that M𝜖 → M𝑓 when 𝜖 → 0. Notice that for any two roots 𝑟, 𝑟 ′,
M𝜖 (𝑟 )
M𝜖 (𝑟 ′)

=

𝜖𝑃 (𝑟
′)−𝑃 (𝑟 )

. Since this relation depends only on 𝑃 (𝑟 ), 𝑃 (𝑟 ′),M𝜖 is proportional; hence,M𝑓 is fair in

limit. �

Both Examples 7 and 8 show that M𝑓 is not exact. Our next mechanism is an exact mechanism,

but not fair.

3.2 An exact mechanism
Consider the forest in Figure 7. Denote 𝑇1,𝑇2,𝑇3 for the largest, second largest and smallest trees,

respectively. The vertical dotted line denotes the middle of 𝑇1 (which is 𝑃∗/2 = 5).

Consider the following mechanism, M ′
, which is exact but not IC. The support of M ′

are all

the vertices which are to the right of the dotted line (namely, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑐1). The idea is to

take the interval ( 1
2
𝑃∗, 𝑃∗] = (5, 10] and partition it into subintervals. Each vertex 𝑥 ∈ supp(M ′)

gets ownership on the subinterval (max{ 1
2
𝑃∗, 𝑃 (𝑥)}, 𝑃 (𝑥)]. It is possible that several vertices from

different trees will claim ownership of a subinterval, in this case the ownership on this subinterval
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Fig. 7

is equally shared between them. In the example of Figure 7, 𝑎1 owns the subinterval ( 1
2
𝑃∗, 𝑃 (𝑎1)] =

(5, 6] in 𝑇1; 𝑏1 owns the subinterval (5, 7] in 𝑇2; and 𝑐1 owns the subinterval (5, 8] in 𝑇3. Thus, the
subinterval (5, 6] is co-owned by the three of them and each gets a share of 1/3 of this subinterval.

Similarly, (6, 7] is shared between 𝑎2, 𝑏1, 𝑐1; (7, 8] is shared between 𝑎2, 𝑏2, 𝑐1. The subinterval (8, 9]
is shared by only two vertices (because 𝑃 (𝑐1) ≤ 8): 𝑎3 and 𝑏2. Finally, the subinterval (9, 10] in
owned by 𝑎3 alone. Now each subinteral (𝛼, 𝛽] divides a probability of log

2

𝛽

𝛼
among the partners

who own it. We get the following distribution:

M ′(𝑎1) =
1

3

log
2

6

5

M ′(𝑎2) =
1

3

log
2

7

6

+ 1

3

log
2

8

7

M ′(𝑎3) =
1

2

log
2

9

8

+ log
2

10

9

M ′(𝑏1) =
1

3

log
2

7

5

M ′(𝑏2) =
1

3

log
2

8

7

+ 1

2

log
2

9

8

M ′(𝑐1) =
1

3

log
2

8

5

The sum of the probabilities distributed by the subintervals is the probability that would be

distributed by the whole interval ( 1
2
𝑃∗, 𝑃∗] which is precisely log

2

𝑃∗

1

2
𝑃∗ = 1. This shows that this

mechanism is exact. The problem, as mentioned, is that it is not IC. To see that, notice that in the

forest 𝐹𝑎1 , the middle line drops to 4.5 (since now 𝑃∗ (𝐹𝑎1 ) = 𝑃 (𝑏2) = 9). This means that 𝑎1 owns

a larger subinterval in 𝐹𝑎1 , which means higher probability. Similar problem can be for vertices

which are in 𝑇1 right below the middle (but above
1

3
𝑃∗
)—removing their out-edge might drop the

middle so that they are entitled to some positive probability. If we want our mechanism to be IC we

must award them these additional probabilities. The compensation will come from the probability

of 𝑟1 (𝑎3 in our example): this vertex will not get his “fair share” of the interval but instead will get a

probability which completes the total distribution to 1. Of course, we will have to prove that these

corrections do not sum up to more than 1 themselves (or equivalently, that the “complementary

probability” is never negative).

We turn to the formal definition of our exact mechanism,M𝑏 . For any real number 𝑧 > 0, we define

𝑢 (𝑧) = |{𝑟 ∈ 𝑅 : 𝑃 (𝑟 ) ≥ 𝑧}|. As with the previous mechanism, we defineM𝑏 by defining it only for

roots:

∀𝑖 > 1, M𝑏 (𝑟𝑖 ) =


1

ln 2

∫ 𝑃 (𝑟𝑖 )
max{𝑃 (𝑟𝑖 ), 1

2
𝑃∗ }

𝑑𝑧

𝑧𝑢 (𝑧) , 𝑃 (𝑟𝑖 ) > 1

2
𝑃∗,

0, 𝑃 (𝑟𝑖 ) ≤ 1

2
𝑃∗ .

M𝑏 (𝑟1) = 1 −M𝑏 (𝑁 \{𝑟1}).



We illustrate the workings of this mechanism for the forest in Figure 7.

Example 12. All the vertices (in all trees) to the right of the middle dotted line get a positive
probability. The vertices to the left of this line in trees other than 𝑇1 get a zero probability. The vertex
𝑎0 gets a zero probability as well since in the graph 𝐹𝑎0 the middle drops down a little, but it is still
above 𝑃 (𝑎0). It is clear from the diagram that

𝑢 (𝑧) =


3, 𝑧 ≤ 8,

2, 8 < 𝑧 ≤ 9,

1, 9 < 𝑧 ≤ 10.

The vertices 𝑎2, 𝑏1, 𝑏2, 𝑐1 get the same probabilities as we calculated for the mechanismM ′. To find the
probability of 𝑎1, consider the forest 𝐹𝑎1 .
Here 𝑃∗ (𝐹𝑎1 ) = 𝑃 (𝑏2) = 9; hence the middle dropped to 4.5. We can now calculate,

M𝑏 (𝑎1) =
1

3

log
2

𝑃 (𝑎1)
1

2
𝑃∗ (𝐹𝑎1 )

=
1

3

log
2

6

4.5
.

Finally, the probability of 𝑎3 is the remaining probability which completes the total distribution to 1.
SinceM𝑏,M ′

𝑏
are exact and the only differences between them are the probabilities of 𝑎1 and 𝑎3, we

get that

M𝑏 (𝑎3) = M ′(𝑎3) − (M𝑏 (𝑎1) −M ′(𝑎1)) =
1

2

log
2

9

8

+ log
2

10

9

− 1

3

log
2

6

4.5
+ 1

3

log
2

6

5

.

If we just wanted to prove that M𝑏 (𝐹 ) is well-defined, it was enough to show that M𝑏 (𝑎1) −
M ′

𝑏
(𝑎1) ≤ M ′

𝑏
(𝑎3). Notice also that if the two largest trees were of the same order (i.e., 𝑃 (𝑏2) =

𝑃 (𝑎3)), then we would have 𝑃∗ (𝐹𝑎1 ) = 𝑃 (𝑏2) = 𝑃∗ (𝐹 ) and in this case M𝑏 (𝑎1) = M ′
𝑏
(𝑎1) (because

the middle line, and hence the subinterval of 𝑎1, does not change when we remove the out-edge of

𝑎1). This implies that when the two largest trees are of the same order,M𝑏 (𝑟1) = M ′
𝑏
(𝑟1) (i.e., 𝑟1

gets his “fair share”), and all we need to show is that when we lower down the order of the second

largest tree, the compensations for the vertices in 𝑇1 near the middle are never larger than the

probability of 𝑟1 underM ′
𝑏
. The following is our formal claim for the mechanism M𝑏 . The proof is

based on the above observation. Due to the length and technical nature of the proof, we postpone

it to the appendix.

Theorem 13. MechanismM𝑏 is well-defined, IC, exact, and with quality 𝑄 (M𝑏) ≥ 1/3.

We end this section by showing thatM𝑏 is not proportional, and hence not fair. Let 𝐹 be a forest

with a 𝑘-star with centre 𝑐1 and a (𝑘 − 1)-star with centre 𝑐2. Assume that 𝑛 = 3𝑘 . The probabilities

of 𝑐1, 𝑐2 are

M𝑏 (𝑐2) =
1

2

log
2

𝑘 − 1

1

2
𝑘

=
1

2

(1 − log
2

𝑘

𝑘 − 1

),

M𝑏 (𝑐1) = 1 −M𝑏 (𝑐2) =
1

2

(1 + log
2

𝑘

𝑘 − 1

) .

Now, if we add another (𝑘 − 1)-star (adding such a star does not involve any of the vertices in the

trees of 𝑐1, 𝑐2), then

M𝑏 (𝑐2) =
1

3

log
2

𝑘 − 1

1

2
𝑘

=
1

3

(1 − log
2

𝑘

𝑘 − 1

).

M𝑏 (𝑐1) = 1 − 2M𝑏 (𝑐2) =
1

3

(1 + 2 log
2

𝑘

𝑘 − 1

).



We see that the ratio

M𝑏 (𝑐1)
M𝑏 (𝑐2)

has changed, which means that M𝑏 is not proportional.

4 AN IMPOSSIBILITY
In this section we prove the impossibility theorem stated below.

Theorem 14. Let M be an IC, fair and exact mechanism. Then 𝑄 (M) = 0.

Instead of dealing directly with the property of fairness, we prove that this property can be

replaced with a more mathematically convenient property of being function-generated (Defini-

tion 15, Lemma 16). We then prove a couple of asymptotic Lemmata (Lemma 17 and Lemma 18) that

together can be used to show that for any function-generated mechanism with a positive quality,

we can find a forest for which the mechanism is distributing probabilities that sum up to more

than one. This is the path with take in the proof of Theorem 19, which then immediately implies

Theorem 14.

Definition 15. An exact, IC mechanismM is function-generated if there is a series of positive
functions 𝑓𝑛 : N→ R+ such that for any 𝐹 ∈ F 𝑁 with |𝑁 | = 𝑛 and 𝑟 ∈ 𝑅(𝐹 ),

M(𝑟 ) = 𝑓𝑛 (𝑃 (𝑟 ; 𝐹 ))∑
𝑟 ′∈𝑅 (𝐹 ) 𝑓𝑛 (𝑃 (𝑟 ′; 𝐹 ))

©­«1 −
∑

𝑥 ∈𝑁 \𝑅 (𝐹 )
M(𝑥 ; 𝐹 )ª®¬ .

In other words, in a function-generated mechanism, the excess probability (i.e., the probability

left after distributing what is due by the IC demand) is linearly distributed between the roots

according to 𝑓𝑛 (𝑃 (·)).

Lemma 16. LetM be an IC, fair and exact mechanism. Then there is a function-generatedmechanism
M ′ such thatM(𝐹 ) = M ′(𝐹 ), for every forest 𝐹 with at least three roots.

Proof. Fix 𝑛. For any 2 ≤ 𝑘 ≤ 𝑛 − 1, let 𝑆𝑘 be the forest with a 𝑘-star and 𝑛 − 𝑘 − 1 isolated

vertices. Let 𝑐𝑘 be the centre vertex of the star and let 𝑧𝑘 be an isolated vertex in 𝑆𝑘 . We define the

function 𝑓 = 𝑓𝑛 in the following manner.

𝑓 (1) = 1;

∀2 ≤ 𝑘 ≤ 𝑛 − 1, 𝑓 (𝑘) = M(𝑐𝑘 ; 𝑆𝑘 )
M(𝑧𝑘 ; 𝑆𝑘 )

.

Since M is fair, 𝑓 is well-defined. Let M ′
be the IC mechanism generated by 𝑓 . We will prove

the claim using induction on |𝐸 (𝐹 ) |. The claim is clearly true for the empty forest. Suppose it

is true for all forests with 𝑒 − 1 edges and let 𝐹 be a forest with 𝑒 edges. Since both M,M ′

are IC, the induction hypothesis implies that M(𝑥) = M ′(𝑥) for any 𝑥 ∈ 𝑁 \𝑅.9 This means

that

∑
𝑥 ∈𝑁 \𝑅 M(𝑥) =

∑
𝑥 ∈𝑁 \𝑅 M ′(𝑥), and since both mechanisms are also exact, we get that∑

𝑥 ∈𝑅 M(𝑥) = ∑
𝑥 ∈𝑅 M ′(𝑥). Thus, it is enough to show that ∀𝑥,𝑦 ∈ 𝑅,

M(𝑥)
M(𝑦) =

M ′(𝑥)
M ′(𝑦) . Denote

𝑘 = 𝑃 (𝑥),𝑚 = 𝑃 (𝑦). Since we assume that there are at least three roots, 𝑘 +𝑚 < 𝑛. Let 𝑆𝑘,𝑚 be the

forest with one 𝑘-star, one𝑚-star, and 𝑛−𝑘 −𝑚−2 isolated vertices. Let 𝑐𝑘 , 𝑐𝑚 be the centre vertices

of the 𝑘-star and 𝑚-star, respectively, and let 𝑧 be an isolated vertex. From the proportionality

property of M we get

M(𝑥 ; 𝐹 )
M(𝑦; 𝐹 ) =

M(𝑐𝑘 ; 𝑆𝑘,𝑚)
M(𝑐𝑚 ; 𝑆𝑘,𝑚)

=
M(𝑐𝑘 ; 𝑆𝑘,𝑚)/M(𝑧; 𝑆𝑘,𝑚)
M(𝑐𝑚 ; 𝑆𝑘,𝑚)/M(𝑧; 𝑆𝑘,𝑚)

.

9
Since 𝐹𝑥 has one less edge and more root than 𝐹 , the induction applies.



Now let 𝑧𝑘 , 𝑧𝑚 be isolated nodes in 𝑆𝑘 , 𝑆𝑚 , respectively. Then again by the proportionality property

ofM,

M(𝑐𝑘 ; 𝑆𝑘,𝑚)
M(𝑧; 𝑆𝑘,𝑚)

=
M(𝑐𝑘 ; 𝑆𝑘 )
M(𝑧𝑘 , 𝑆𝑘 )

= 𝑓 (𝑘),
M(𝑐𝑚 ; 𝑆𝑘,𝑚)
M(𝑧; 𝑆𝑘,𝑚)

=
M(𝑐𝑚 ; 𝑆𝑚)
M(𝑧𝑚, 𝑆𝑚)

= 𝑓 (𝑚).

Hence,

M(𝑥 ; 𝐹 )
M(𝑦; 𝐹 ) =

𝑓 (𝑘)
𝑓 (𝑚) =

M ′(𝑥 ; 𝐹 )
M ′(𝑦; 𝐹 ) .

�

In light of Lemma 16, our goal is to show that if M is function-generated, then 𝑄 (M) = 0

(Theorem 19). To achieve this goal we prove two lemmata. The first, Lemma 17, states that a

function-generated mechanism with a positive quality is “convex at a distance”; meaning that for

any 𝑥1, 𝑥2 such that 𝑥1/𝑥2 is large enough, 𝑓𝑛 (𝑥1)/𝑓𝑛 (𝑥2) grows fast with 𝑛.

Lemma 17. LetM be a mechanism generated by the functions 𝑓𝑛 . Assume 𝑄 = 𝑄 (M) > 0. Then
for any 𝑘,𝑚 ∈ N such that𝑚 ≥ 2𝑘/𝑄2, 𝑓𝑛 (𝑚) = 𝜔 (𝑛𝑓 (𝑘)).

Proof. Fix 𝑘 . We will show first that for any ℓ ≥ 𝑘
√
2/𝑄 , 𝑓 (ℓ) = Ω(𝑛𝑓 (𝑘)). If we show this, then

for any𝑚 ≥ 2𝑘/𝑄2
, we can use this claim twice and get that

𝑓 (𝑚) ≥ 𝑓 (2𝑘/𝑄2) = Ω(𝑛𝑓 (𝑘
√
2/𝑄)) = Ω(𝑛2 𝑓 (𝑘)) = 𝜔 (𝑛𝑓 (𝑘)) .

Let 𝐹 be the forest on 𝑛 vertices with one ℓ-star and
𝑛 − ℓ

𝑘
𝑘-stars, with 𝑐ℓ as the centre vertex of

the ℓ-star. Since,

𝑄 ≤ 𝑄 (M; 𝐹 ) ≤ ℓ · M(𝑐ℓ ) + 𝑘 · (1 −M(𝑐ℓ ))
ℓ

≤ M(𝑐ℓ ) (1 −𝑄/
√
2) +𝑄/

√
2,

we must haveM(𝑐ℓ ) = Ω(1). Using 𝑓 to bound M(𝑐ℓ ) we get

M(𝑐ℓ ) ≤
𝑓 (ℓ)

𝑓 (ℓ) + 𝑛−ℓ
𝑘

· 𝑓 (𝑘)
=

1

1 + 𝑛−ℓ
𝑘

· 𝑓 (𝑘)
𝑓 (ℓ)

= Ω(1)

=⇒ 𝑓 (𝑘)
𝑓 (ℓ) = 𝑂

(
𝑘

𝑛 − ℓ

)
= 𝑂 (𝑛−1),

as needed. �

Lemma 18, shows a specific structure of a tree which, under certain conditions, leads to an

over-distribution by a function-generated mechanism.

Lemma 18. LetM be a mechanism generated by the functions 𝑓𝑛 . Let 𝐹 be the tree of four connected
stars as in Figure 8.

𝑥1

𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

Fig. 8
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𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

𝐹1

𝑥1

𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

𝐹2

𝑥1

𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

𝐹3

𝑥1

𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

𝐹4

𝑥1

𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

𝐹5

𝑥1

𝑏

𝑥2

𝑏

𝑥3

𝑎

𝑥4

𝑎

𝐹6

Table 1

Denote 𝑘 =
𝑓𝑛 (𝑏)
𝑓𝑛 (2𝑎)

,𝑚 =
𝑓𝑛 (𝑎 + 𝑏)
𝑓𝑛 (2𝑎)

. Suppose that 𝑎 = 𝑎(𝑛), 𝑏 = 𝑏 (𝑛) are such that: (1) 𝑏 ≥ 2𝑎,

(2)
𝑓𝑛 (1)
𝑓𝑛 (𝑏)

= 𝑜 (𝑛−1), (3)𝑚 ≥ 7𝑘2, (4) lim

𝑛→∞
𝑓𝑛 (𝑎)
𝑓𝑛 (2𝑎)

= 0.

Then
∑

𝑥 ∈𝑁 M(𝑥 ; 𝐹 ) ≥ (1 − 𝑜 (1))
(
1 + 1

48𝑘

)
.

Proof. Consider the six sub-forests of 𝐹 depicted in Table 1. Let 𝑓 = 𝑓𝑛 . In each of these forests,

all the nodes in 𝑁 \{𝑥1, 𝑥2, 𝑥3, 𝑥4} have progeny 1, and their probabilities are at most
𝑓 (1)
𝑓 (𝑏) . Hence by

property (2), the total probability of 𝑁 \{𝑥1, 𝑥2, 𝑥3, 𝑥4} is at most
𝑛𝑓 (1)
𝑓 (𝑏) = 𝑜 (1). We will thus ignore

the probabilities of these nodes and assume they are actually zero.

We claim that 𝑓 must be monotone non-decreasing; otherwise, let 𝑘 > 𝑚 be such that 𝑓 (𝑘) < 𝑓 (𝑚),
then

M(𝑐𝑘 ; 𝑆𝑘,𝑚)
M(𝑐𝑚 ; 𝑆𝑘,𝑚)

=
𝑓 (𝑘)
𝑓 (𝑚) < 1,

in contradiction to the monotonicity property of a fair mechanism. Thus, since 2𝑏 > 𝑏 > 2𝑎,

together with property (4), we get that

lim

𝑛→∞
𝑓 (𝑎)
𝑓 (𝑏) = lim

𝑛→∞
𝑓 (𝑎)
𝑓 (2𝑏) = 0.

Hence, in the forest 𝐹1,M(𝑥3; 𝐹1) = M(𝑥4; 𝐹1) = 𝑓 (𝑎)
2𝑓 (𝑎)+2𝑓 (𝑏) = 𝑜 (1), and similarly in 𝐹2,M(𝑥3; 𝐹2) ≤

𝑓 (𝑎)
2𝑓 (𝑎)+𝑓 (2𝑏) = 𝑜 (1). Using the IC property we see that M(𝑥3; 𝐹3) = M(𝑥3; 𝐹1) and we can calculate

that M(𝑥1; 𝐹3) = 𝑓 (𝑏)
𝑓 (2𝑎)+2𝑓 (𝑏) (1 − M(𝑥3; 𝐹1)) = 1−𝑜 (1)

2+𝑘−1 . Again by IC, M(𝑥1; 𝐹4) = M(𝑥1; 𝐹3), and
M(𝑥3; 𝐹4) = M(𝑥3; 𝐹2). Using IC and 𝑓 (2𝑏) > 𝑓 (𝑎 + 𝑏), we get

M(𝑥2; 𝐹 ) = M(𝑥2; 𝐹4) =
𝑓 (2𝑏)

𝑓 (2𝑏) + 𝑓 (2𝑎) (1 −M(𝑥1; 𝐹3) −M(𝑥3; 𝐹2))

≥ 1

1 +𝑚−1

(
1 − 1 − 𝑜 (1)

2 + 𝑘−1 − 𝑜 (1)
)
= (1 − 𝑜 (1)) 1 + 𝑘−1

(1 +𝑚−1) (2 + 𝑘−1) . (1)



Below we calculateM(𝑥3; 𝐹 ) in a similar way without further elaboration.

M(𝑥1; 𝐹6) = M(𝑥1; 𝐹5) =
𝑓 (𝑏)

𝑓 (𝑎) + 𝑓 (𝑏) + 𝑓 (𝑎 + 𝑏) (1 −M(𝑥2; 𝐹1))

≤ 1 − 1/2(1 − 𝑜 (1))
1 + 𝑓 (𝑎+𝑏)

𝑓 (𝑏)

=
1 + 𝑜 (1)

2(1 +𝑚𝑘−1) .

M(𝑥2; 𝐹6) = M(𝑥2; 𝐹2) =
𝑓 (2𝑏)

2𝑓 (𝑎) + 𝑓 (2𝑏) (1 −M(𝑥1; 𝐹1)) ≤
1

2

.

M(𝑥3; 𝐹 ) = M(𝑥3; 𝐹6) =
𝑓 (𝑎 + 2𝑏)

𝑓 (𝑎) + 𝑓 (𝑎 + 2𝑏) (1 −M(𝑥1; 𝐹6) −M(𝑥2; 𝐹6))

≥ (1 − 𝑜 (1))
(
1 − 1

2

− 1 + 𝑜 (1)
2(1 +𝑚𝑘−1)

)
= (1 − 𝑜 (1)) 𝑚𝑘−1

2(1 +𝑚𝑘−1) . (2)

Combining (1) and (2) we get:∑
𝑥 ∈𝑁

M(𝑥 ; 𝐹 ) ≥ (1 − 𝑜 (1))
(

1 + 𝑘−1
(1 +𝑚−1) (2 + 𝑘−1) +

𝑚𝑘−1

2(1 +𝑚𝑘−1)

)
.

Now, using property (3) and some algebra,

1 + 𝑘−1
(1 +𝑚−1) (2 + 𝑘−1) +

𝑚𝑘−1

2(1 +𝑚𝑘−1) ≥ 1 + 𝑘−1
(1 + 𝑘−2/7) (2 + 𝑘−1) +

7𝑘

2(1 + 7𝑘)

= 1 + 1

2

· 35𝑘3 − 14𝑘2 − 11𝑘 − 2

98𝑘4 + 63𝑘3 + 21𝑘2 + 9𝑘 + 1

,

and since 𝑘 ≥ 1 (due to the monotonicity of 𝑓 ),

≥ 1 + 1

2

· 8𝑘3

192𝑘4
= 1 + 1

48𝑘
,

as claimed. �

Theorem 19 is just a step away from Theorem 14.

Theorem 19. Let M be a function-generated mechanism. Then 𝑄 (M) = 0.

Proof. Assume that M is generated by functions 𝑓𝑛 and has quality 𝑄 = 𝑄 (M) > 0. Let 𝑦 be

the smallest value in {𝑦 = 2
𝑖/𝑄2

: 𝑖 ∈ N, 𝑖 ≥ 1,
𝑓𝑛 (2𝑦)
𝑓𝑛 (𝑦)

> 𝑛1/log2 (4/𝑄
2) }. By Lemma 17, for large

enough 𝑛, 𝑦 ≤ 4/𝑄4
, for otherwise

𝑓𝑛 (4/𝑄4)
𝑓𝑛 (2/𝑄2) ≤

⌊log
2
(4/𝑄2) ⌋∏
𝑖=1

𝑓𝑛 (2𝑖+1/𝑄2)
𝑓𝑛 (2𝑖/𝑄2) ≤

(
𝑛1/log2 (4/𝑄

2)
) ⌊log

2
(4/𝑄2) ⌋

≤ 𝑛,

in contradiction to the lemma with 𝑘 = 2/𝑄2
.

For two values 𝑎′, 𝑏 ′, let 𝐹 (𝑎′, 𝑏 ′) be the forest of Lemma 18 with 𝑎 = 𝑎′, 𝑏 = 𝑏 ′. Consider the set of

forests {𝐹𝑖 (𝑦, (2 + 𝑖)𝑦)}4/𝑄
2

𝑖=0
. Denote also by 𝑘𝑖 ,𝑚𝑖 the values of 𝑘,𝑚 in Lemma 18 for 𝐹𝑖 . We claim

that for all the forests in this set, we have properties (1), (2) and (4) of the lemma. Indeed, (1) is

trivial; since 𝑦 ≥ 2/𝑄2
, Lemma 17 implies property (2); and property (4) comes directly from the

definition of 𝑦.



To complete the proof we will show that there is a forest 𝐹𝑖 such that𝑚𝑖 ≥ 7𝑘2𝑖 (i.e., property (3))

and 𝑘𝑖 is uniformly bounded from above. This will allow us to infer that M is over-distributing on

𝐹𝑖 .

Notice that 𝑘0 = 1, and for any 𝑖 ≥ 1,

𝑘𝑖 =
𝑓𝑛 ((2 + 𝑖)𝑦)

𝑓𝑛 (2𝑦)
; 𝑚𝑖 =

𝑓𝑛 ((3 + 𝑖)𝑦)
𝑓𝑛 (2𝑦)

= 𝑘𝑖+1 .

Suppose that for all 0 ≤ 𝑗 ≤ 𝑖 ,𝑚 𝑗 < 7𝑘2𝑗 . Then,

𝑚𝑖 =
𝑚𝑖

𝑘0
=

𝑖∏
𝑗=0

𝑚 𝑗

𝑘 𝑗
< 7

𝑖+1
𝑖∏
𝑗=0

𝑘 𝑗 = 7
𝑖+1

𝑖−1∏
𝑗=0

𝑚 𝑗 < 7
𝑖+1 · 7𝑖

𝑖−1∏
𝑗=0

𝑘2𝑗 < 7
𝑖+1 · 7𝑖

𝑖−2∏
𝑗=0

𝑚2

𝑗

< 7
𝑖+1 · 7𝑖+2(𝑖−1)

𝑖−2∏
𝑗=0

𝑘4𝑗 < . . . < 7
𝑖+1 · 7

∑𝑖
𝑗=1 𝑗 ·2𝑖−𝑗𝑘2

𝑖

0
= 7

𝑖+1+∑𝑖
𝑗=1 𝑗 ·2𝑖−𝑗 . (3)

Hence if 𝑚 𝑗 < 7𝑘2𝑗 for all 0 ≤ 𝑗 ≤ 𝑦/𝑄2
, then 𝑚

4/𝑄2 =
𝑓𝑛 ((4/𝑄2 + 3)𝑦)

𝑓𝑛 (2𝑦)
is finitely bounded

(remember that we bound 𝑦 ≤ 4/𝑄4
); but

(4/𝑄2 + 3)𝑦
2𝑦

>
2

𝑄2
, which for large enough 𝑛 would lead

to a contradiction to Lemma 17.

Now let 𝑖 be the first index such that𝑚𝑖 ≥ 7𝑘2𝑖 . Then we can put 𝑖 = 4/𝑄4
in (3) to get a uniform

upper bound on 𝑘𝑖 =𝑚𝑖−1. Hence by Lemma 18,∑
𝑥 ∈𝑁

M(𝑥 ; 𝐹 ) ≥ (1 − 𝑜 (1))
(
1 + 1

48𝑘𝑖

)
> 1,

for 𝑛 large enough. �

Proof of Theorem 14. Basically, the proof is a direct consequence of Lemma 16 and Theorem 19.

However, the claim of Lemma 16 applies only to forests with at least three roots, whereas the proof

of Lemma 18 was based on forests with less than three roots. It is not hard, however, to see that the

proof will not suffer if we add to 𝐹 two isolated vertices, thus the derivation is legitimate. �
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A THE PROOF FOR M𝑏

Proof of Theorem 13. MechanismM𝑏 is IC and exact by definition. For any 𝑥 ∈ 𝑁 , if 𝑃 (𝑥) <
1

3
𝑃∗

then 𝑃∗ (𝐹𝑥 ) > 2

3
𝑃∗ > 2𝑃 (𝑥) and M𝑏 (𝑥) = 0; hence supp(M𝑏) ⊆ {𝑥 ∈ 𝑁 : 𝑃 (𝑥) ≥ 1

3
𝑃∗}

which implies that 𝑄 (M𝑏) ≥ 1

3
. By definition M𝑏 (𝑟𝑖 ) ≥ 0 for all 𝑖 > 1. It remains to show that

M𝑏 (𝑟1) ≥ 0 for all forests.

Let 𝐹 be any forest. It is easy to verify thatM𝑏 (𝑟1) > 0 when 𝑃 (𝑟1) ≤ 1

2
𝑃∗
. We assume then that

𝑃 (𝑟1) > 1

2
𝑃∗

. For every 𝑖 > 1 with 𝑃 (𝑟𝑖 ) > 1

2
𝑃∗

, supp(M𝑏) ∩𝑇 (𝑟𝑖 ) = {𝑥 ∈ 𝑇 (𝑟𝑖 ) : 𝑃 (𝑥) > 1

2
𝑃∗}, and

since
1

2
𝑃∗ > 1

2
𝑃 (𝑟𝑖 ), by Observation 6 supp(M𝑏) ∩𝑇 (𝑟𝑖 ) is a path. This means that

M𝑏 (𝑇 (𝑟𝑖 )) =
1

ln 2

∑
𝑥 ∈𝑇 (𝑟𝑖 ) :𝑃 (𝑥)> 1

2
𝑃∗

∫ 𝑃 (𝑥)

max{𝑃 (𝑥), 1
2
𝑃∗ }

𝑑𝑧

𝑧𝑢 (𝑧) =
1

ln 2

∫ 𝑃 (𝑟𝑖 )

1

2
𝑃∗

𝑑𝑧

𝑧𝑢 (𝑧) ,

which is independent of the internal structure of 𝑇 (𝑟𝑖 ). In particular, M𝑏 (𝑟1) is independent of the
internal structure of𝑇 (𝑟2) and we may assume that𝑇 (𝑟2) is a 𝑃 (𝑟2)-star. For any positive 𝑝 ∈ R, let
𝐹 (𝑝) be the forest we get from 𝐹 by replacing the tree𝑇 (𝑟2) with a 𝑝-star.10 If 𝑃 (𝑟2) is infinitesimally

close to 𝑃∗
, thenM𝑏 (𝑟1) =

1

ln 2

∫ 𝑃 (𝑟1)
𝑃 (𝑟1)

𝑑𝑧

𝑧𝑢 (𝑧) (see discussion paragraph after Example 12). To find

the probability of 𝑟1 in 𝐹 we start withM𝑏 (𝑟1; 𝐹 (𝑃∗)) and integrate the changes inM𝑏 (𝑟1; 𝐹 (𝑝))
while lowering down 𝑝 until we reach 𝑃 (𝑟2). More precisely, for any 𝑥 ∈ 𝑁, 𝑝 ∈ R+ we define

Δ(𝑥) = Δ(𝑥, 𝑝) = − 𝑑

𝑑𝑝
(M𝑏 (𝑥 ; 𝐹 (𝑝))). By definition of M𝑏 (𝑟1), Δ(𝑟1)𝑑𝑝 = −∑

𝑥≠𝑟1
Δ(𝑥)𝑑𝑝 . Hence

we can write,

M𝑏 (𝑟1) = M𝑏 (𝑟1; 𝐹 (𝑃 (𝑟2))) = M𝑏 (𝑟1; 𝐹 (𝑃∗)) +
∫ 𝑃∗

𝑃 (𝑟2)
Δ(𝑟1)𝑑𝑝

= M𝑏 (𝑟1; 𝐹 (𝑃∗)) −
∑
𝑥≠𝑟1

∫ 𝑃∗

𝑃 (𝑟2)
Δ(𝑥)𝑑𝑝.

We will evaluate the last expression in three intervals, starting with 𝑝 > 𝑃 (𝑟1), continuing with

1

2
𝑃∗ < 𝑝 ≤ 𝑃 (𝑟1), and finally for 𝑝 ≤ 1

2
𝑃∗
. In each interval we will find Δ(𝑥) directly by taking an

10
This star has ⌊𝑝 ⌋ leaves and a centre vertex with value 𝑝 − ⌊𝑝 ⌋.
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infinitesimal 𝛿 > 0 and denoting 𝑝 ′ = 𝑝 − 𝛿 . Then,

Δ(𝑥, 𝑝)𝑑𝑝 = M𝑏 (𝑥 ; 𝐹 (𝑝 ′)) −M𝑏 (𝑥 ; 𝐹 (𝑝)).

Let 𝐴(𝑝) = {𝑥 ∈ 𝑁 : 𝑃 (𝑥) = 𝑃∗ (𝐹𝑥 (𝑝))} = {𝑥 ∈ 𝑇 (𝑟1) : 𝑃 (𝑥) ≥ max{𝑝, 1
2
𝑃∗}}. By Observation 6,

𝐴 is a path: {𝑎1, . . . , 𝑎𝑘 = 𝑟1}. Let 𝐿(𝑝) = supp(M𝑏 ; 𝐹 (𝑝)) ∩𝑇 (𝑟1). Let ℓ be the set of leaves in 𝐿.

Since ∀𝑥 ∈ 𝐿, 𝑃 (𝑥) > 1

3
𝑃∗
, |ℓ | ≤ 2.

11

1) 𝑝 > 𝑃 (𝑟1). In this interval 𝐴 = {𝑟1}. There are at most three nodes except 𝑟1 which incur a

change in their probabilities under an infinitesimal decrease of 𝑝 . The first is 𝑟2 (𝐹 (𝑝)), whose
progeny is decreased, and hence loses part of its probability. Since 𝑢 (𝑝) = 2 we have,

Δ(𝑟2)𝑑𝑝 = M𝑏 (𝑟2; 𝐹 (𝑝 ′)) −M𝑏 (𝑟2; 𝐹 (𝑝)) =
1

ln 2

(∫ 𝑝′

1

2
𝑃∗

𝑑𝑧

𝑧𝑢 (𝑧) −
∫ 𝑝

1

2
𝑃∗

𝑑𝑧

𝑧𝑢 (𝑧)

)
=

1

2 ln 2

∫ 𝑝′

𝑝

𝑑𝑧

𝑧
= −1

2

log
2

𝑝

𝑝 ′ .

The nodes 𝑥 ∈ ℓ , on the other hand, might gain extra probability due to the decrease in

𝑃∗ (𝐹𝑥 (𝑝)) (see the calculation of M𝑏 (𝑎1) in Example 12). That is, if 𝑝 > 𝑃∗ − 𝑃 (𝑥) then
𝑃∗ (𝐹𝑥 (𝑝)) = 𝑝 and 𝑃∗ (𝐹𝑥 (𝑝 ′)) = 𝑝 ′

. If in addition 𝑃 (𝑥) < 1

2
𝑝 , then lowering 𝑝 increases the

probability of 𝑥 ,

Δ(𝑥)𝑑𝑝 =
1

ln 2

(∫ 𝑃 (𝑥)

1

2
𝑝′

𝑑𝑧

𝑧𝑢 (𝑧; 𝐹𝑥 (𝑝 ′)) −
∫ 𝑃 (𝑥)

1

2
𝑝

𝑑𝑧

𝑧𝑢 (𝑧; 𝐹𝑥 (𝑝))

)

=
1

ln 2

∫ 1

2
𝑝

1

2
𝑝′

𝑑𝑧

𝑧𝑢 (𝑧; 𝐹𝑥 (𝑝))
=


1

𝑢 ( 1
2
𝑝)

log
2

𝑝

𝑝 ′ , 𝑃∗ − 𝑃 (𝑥) < 1

2
𝑝

1

𝑢 ( 1
2
𝑝) + 1

log
2

𝑝

𝑝 ′ , 𝑃∗ − 𝑃 (𝑥) ≥ 1

2
𝑝.

The difference between the two cases is that if 𝑃∗ − 𝑃 (𝑥) ≥ 1

2
𝑝 then in 𝐹𝑥 (𝑝) there is another

tree with progeny at least
1

2
𝑝 and hence 𝑢 ( 1

2
𝑝; 𝐹𝑥 (𝑝)) increases by one. Consider now the

two possibilities:

(a) If |ℓ | = 1, then we bound 𝑢 ( 1
2
𝑝) ≥ 2 and get that Δ(ℓ)𝑑𝑝 ≤ 1

2

log
2

𝑝

𝑝 ′ . Thus, in this case

Δ(𝑟2) + Δ(ℓ) ≤ 0. We conclude that if 𝑃 (𝑟2) > 𝑃 (𝑟1) and |ℓ | = 1, then

M𝑏 (𝑟1) ≥ M𝑏 (𝑟1; 𝐹 (𝑃∗)).

(b) If |ℓ | = 2, then we can bound 𝑢 ( 1
2
𝑝) ≥ 3 and get that Δ(ℓ)𝑑𝑝 ≤ 2

3

log
2

𝑝

𝑝 ′ . We conclude

that if 𝑃 (𝑟2) > 𝑃 (𝑟1) and |ℓ | = 2, then (Δ(𝑟2) + Δ(ℓ))𝑑𝑝 ≤ 1

6

log
2

𝑝

𝑝 ′ and∫ 𝑃∗

𝑃 (𝑟2)
(Δ(𝑟2) + Δ(ℓ))𝑑𝑝 ≤ 1

6

log
2

𝑃∗

𝑃 (𝑟2)
,

M𝑏 (𝑟1) ≥ M𝑏 (𝑟1; 𝐹 (𝑃∗)) − 1

6

log
2

𝑃∗

𝑃 (𝑟2)
.

11
If 𝐿 has more than two leaves, then there is a “fork” in𝑇1 with three leaves, each with progeny at least

1

3
𝑃∗

. This means

that 𝑃 (𝑟1) ≥ 𝑃∗ + 1, which is a contradiction.



If 𝑃 (𝑟2) > 𝑃 (𝑟1) then for 𝑃 (𝑟2) ≤ 𝑧 ≤ 𝑃∗
, 𝑢 (𝑧; 𝐹 (𝑃∗)) = 2 and

M𝑏 (𝑟1; 𝐹 (𝑃∗)) = 1

ln 2

∫ 𝑃 (𝑟1)

𝑃 (𝑟1)

𝑑𝑧

𝑧𝑢 (𝑧; 𝐹 (𝑃∗)) ≥ 1

2 ln 2

∫ 𝑃∗

𝑃 (𝑟2)

𝑑𝑧

𝑧
=
1

2

log
2

𝑃∗

𝑃 (𝑟2)
.

Thus, from the above two cases we get that if 𝑃 (𝑟2) > 𝑃 (𝑟1),

M𝑏 (𝑟1) ≥


1

2

log
2

𝑃∗

𝑃 (𝑟2)
, |ℓ | ≤ 1,

1

3

log
2

𝑃∗

𝑃 (𝑟2)
, |ℓ | = 2.

In any case,M𝑏 (𝑟1) > 0.

2)
1

2
𝑃∗ < 𝑝 ≤ 𝑃 (𝑟1). Taking 𝑃 (𝑟2) = 𝑃 (𝑟1) in the previous case, we get that

M𝑏 (𝑟1; 𝐹 (𝑃∗)) −
∑
𝑥≠𝑟1

∫ 𝑃∗

𝑃 (𝑟1)
Δ(𝑥)𝑑𝑝 ≥


1

2

log
2

𝑃∗

𝑃 (𝑟1)
, |ℓ | ≤ 1,

1

3

log
2

𝑃∗

𝑃 (𝑟1)
, |ℓ | = 2.

Suppose that 𝑝 = 𝑃 (𝑟1) and 𝐴(𝑝) = {𝑎1, 𝑎2 = 𝑟1}. An infinitesimal decrease of 𝑝 affects the

probabilities of 𝑟2 and ℓ just like before. There is another probability which changes with 𝑝 ,

namely the probability of 𝑎1. To evaluate Δ(𝑎1) consider the forest 𝐹𝑎1 . Here 𝑎1 = 𝑟1 (𝐹𝑎1 ) and
𝑝 > 𝑃 (𝑎1). We therefore know from the previous case that Δ(𝑎1) = −Δ(𝑟2 (𝐹𝑎1 (𝑝)); 𝐹𝑎1 (𝑝)) −
Δ(ℓ (𝐹𝑎1 (𝑝)); 𝐹𝑎1 (𝑝)). Notice that Δ(𝑟2) depends only on 𝑝; hence it is the same in 𝐹 (𝑝) and
𝐹𝑎1 (𝑝):

Δ(𝑟2; 𝐹 (𝑝)) = Δ(𝑟2 (𝐹𝑎1 (𝑝)); 𝐹𝑎1 (𝑝)) .
We get that ∑

𝑥≠𝑟1

Δ(𝑥) = Δ(𝑟2) + Δ(ℓ) + Δ(𝑎1) = Δ(ℓ) − Δ(ℓ (𝐹𝑎1 ); 𝐹𝑎1 ).

We claim that Δ(ℓ (𝐹𝑎1 ); 𝐹𝑎1 ) ≥ Δ(ℓ). To see that, let 𝑦 ∈ ℓ (𝐹𝑎1 ). ThenM𝑏 (𝑦; 𝐹𝑎1 ) =
M𝑏 (𝑦; 𝐹𝑎1,𝑦) > 0.

12
If M𝑏 (𝑦) = M𝑏 (𝑦; 𝐹𝑦) ≠ M𝑏 (𝑦; 𝐹𝑎1,𝑦) then the reason could be one of

two:

(a) The first is when 𝑃 (𝑦) is above the middle in 𝐹𝑎1 but not in 𝐹 ; that is, 𝑃∗ (𝐹𝑎1,𝑦) = 𝑝 <

2𝑃 (𝑦) < 𝑃∗ (𝐹𝑦) = 𝑃∗ − 𝑃 (𝑦). In this case, M𝑏 (𝑦) = 0 =⇒ Δ(𝑦) = 0. Since Δ(𝑦; 𝐹𝑎1 ) > 0

(the probability of 𝑦 increases when 𝑝 drops), we get that Δ(𝑦; 𝐹𝑎1 ) > Δ(𝑦).
(b) The second is when both 𝑃 (𝑦; 𝐹 ) > 0 and 𝑃 (𝑦; 𝐹𝑎1 ) > 0, but 𝑢 ( 1

2
𝑝; 𝐹𝑦) = 𝑢 ( 1

2
𝑝; 𝐹𝑎1,𝑦) + 1.

This happens when 𝑃 (𝑎1) −𝑃 (𝑦) < 1

2
𝑝 and 𝑃∗−𝑃 (𝑎1) < 1

2
𝑝 . Since𝑢 ( 1

2
𝑝 ; 𝐹𝑎1,𝑦) < 𝑢 ( 1

2
𝑝 ; 𝐹𝑦)

we get again that Δ(𝑦; 𝐹𝑎1 ) > Δ(𝑦).
This analysis remains true for all

1

2
𝑃∗ < 𝑝 ≤ 𝑃 (𝑟1), no matter the size of 𝐴. We conclude that

while
1

2
𝑃∗ < 𝑝 ≤ 𝑃 (𝑟1),

∑
𝑥≠𝑟1

Δ(𝑥) ≤ 0; hence if 𝑃 (𝑟2) > 1

2
𝑃∗

we still have

M𝑏 (𝑟1) ≥


1

2

log
2

𝑃∗

𝑃 (𝑟1)
, |ℓ | ≤ 1,

1

3

log
2

𝑃∗

𝑃 (𝑟1)
, |ℓ | = 2.

3) 𝑝 < 1

2
𝑃∗
. In this interval Δ(ℓ) = 0 since for 𝑦 ∈ ℓ , 𝑃 (𝑦) < 1

2
𝑃∗

and 𝑃∗ (𝐹𝑦) = 𝑃∗ − 𝑃 (𝑦) >
1

2
𝑃∗ > 𝑝; hence the decrease in 𝑝 will not influence M𝑏 (𝑦). It is possible that for some

12
The forest 𝐹𝑎1,𝑦 is the forest we get from 𝐹 after removing the out-edges of 𝑎1 and 𝑦.



𝑎𝑖 ∈ 𝐴, Δ(ℓ (𝐹𝑎𝑖 ); 𝐹𝑎𝑖 ) > 0, but as before, this only works to our advantage.
13
In this interval

we also have Δ(𝑟2) = 0. It might be, though, that Δ(𝑟2 (𝐹𝑎1 ); 𝐹𝑎1 ) = Δ(𝑟2; 𝐹𝑎1 ) < 0. This

happens when 𝑃 (𝑎1) < 𝑝 < 1

2
𝑃∗

and 𝑃 (𝑎1) < 2𝑝 . In this case Δ(𝑎1)𝑑𝑝 might be as high

as −Δ(𝑟2; 𝐹𝑎1 )𝑑𝑝 =
1

2

log
2

𝑝

𝑝 ′ , as we have seen in case 1). The probability of 𝑟1 will only

be affected while 𝑝 > 1

2
𝑃 (𝑟1); afterwards the next vertex in 𝐴 will compensate for this

probability.
14
Hence if |ℓ | = 1, then

M𝑏 (𝑟1) ≥
1

2

log
2

𝑃∗

𝑃 (𝑟1)
−

∫ 1

2
𝑃∗

1

2
𝑃 (𝑟1)

Δ(𝑎1)𝑑𝑝 ≥ 1

2

log
2

𝑃∗

𝑃 (𝑟1)
− 1

2

log
2

𝑃∗

𝑃 (𝑟1)
= 0.

To complete the proof we will show that if |𝐴| ≥ 2 then while 𝑝 > 𝑃 (𝑟1), |ℓ | = 1. Indeed

assume the opposite. Let 𝑥 = argmin

𝑥 ∈ℓ
𝑃 (𝑥). Then 𝑝 > 𝑃 (𝑟1) ≥ 𝑃 (𝑎1) > 2𝑃 (𝑥). However, then

𝑃 (𝑥) < 1

2

𝑝 ≤ 1

2

𝑃∗ (𝐹𝑥 (𝑝)) and M𝑏 (𝑥) = 0, in contradiction.

�

13
That is, a drop in 𝑝 would mean higher probability for ℓ (𝐹𝑎𝑖 ) which means that 𝑎𝑖 loses probability and then 𝑟1 gains

probability.

14
And notice, as before, that 𝑟2 (𝑎𝑖 ) is the same for all 𝑖 and Δ(𝑟2) only depends on 𝑝 .
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