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ABSTRACT
In competitive search settings such as the Web, many documents’
authors (publishers) opt to have their documents highly ranked for
some queries. To this end, they modify the documents — specifi-
cally, their content — in response to induced rankings. Thus, the
search engine affects the content in the corpus via its ranking de-
cisions. We present a first study of the ability of search engines
to drive pre-defined, targeted, content effects in the corpus using
simple techniques. The first is based on the herding phenomenon —
a celebrated result from the economics literature — and the second
is based on biasing the relevance ranking function. The types of
content effects we study are either topical or touch on specific docu-
ment properties — length and inclusion of query terms. Analysis of
ranking competitions we organized between incentivized publish-
ers shows that the types of content effects we target can indeed be
attained by applying our suggested techniques. These findings have
important implications with regard to the role of search engines in
shaping the corpus.

CCS CONCEPTS
• Information systems → Information retrieval; Search en-
gine architectures and scalability; Adversarial retrieval;
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1 INTRODUCTION
Search engines are mediators [29]: they connect, using a query and
a ranking function, users that have information needs with content
in the corpus. It is therefore not a surprise that search engines
have been traditionally perceived as “passive observers” of the eco
system they operate in. That is, they search the corpus on behalf
of users but do not actively affect the corpus or document authors.
This is indeed the reality in search settings such as library archives
and enterprise collections.
∗Work done while at the Technion.
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In large-scale adversarial search settings such as the Web, search
engines are far from being passive observers. To begin with, authors
of Web pages — henceforth referred to as publishers — are affected
by induced rankings. Specifically, users pay most attention to top-
retrieved documents [16] which has direct effect on publishers’
exposure [5, 9, 26, 32, 36].

Rankings in adversarial (competitive) retrieval settings such as
the Web have additional effects on publishers. Specifically, many
publishers often change the content of their documents to have
them highly ranked in response to queries of interest — a prac-
tice named search engine optimization (SEO). Thus, the ranking
incentives of publishers, together with the search engine’s rank-
ing function, affect the content in the corpus. For example, it was
shown, using game theoretical analysis, that applying common rel-
evance ranking functions1 in competitive retrieval settings results
in decreased topical coverage in the corpus [3]. One reason is that
a common strategy of publishers is to mimic competing documents
that are ranked higher [23], thereby potentially reducing topical
diversity.

Despite their far reaching — societal and other — implications,
the effects of rankings induced by search engines on content in the
corpus have attracted very little research attention [3, 23]. Indeed,
the large body of prior work on studying content changes in the
Web was performed regardless of ranking effects (e.g., [20, 21, 25]).

We present the first study, to the best of our knowledge, of the
potential ability of search engines to shape the content of docu-
ments in a corpus in specific pre-defined ways via the rankings they
induce. To demonstrate this ability, we explore a few types of con-
tent effects on the corpus and techniques that a search engine can
apply to drive these effects. One of these techniques is essentially an
example in the relevance ranking domain of the celebrated herding
model from the economics literature [2, 6, 28].

Some of the content effects we study are topical. That is, the
search engine affects the coverage of topics in documents, and
to the extreme, the availability of content pertaining to selected
information needs. Other types of content effects touch on specific
document properties — length and inclusion of query terms.

To empirically evaluate the content effects and the techniques for
driving them, and inspired by recent work on publishers’ SEO strate-
gies [23], we organized content-ranking competitions between stu-
dents2. These competitions were approved by international and
institutional ethics committees. The students produced and changed

1Specifically, functions based on the probability ranking principle (PRP) [24]: docu-
ments are ranked by their relevance probability. This holds for most relevance ranking
functions.
2The dataset is available at https://github.com/herdingcikm/herding_data.
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documents throughout time in response to induced rankings so as
to promote them in future rankings. The empirical findings that
emerged from the competitions’ analysis are quite striking: search
engines have an incredible power to drive pre-defined targeted
content effects in the corpus; specifically, using the suggested tech-
niques and with respect to the content-effect types we studied.

It is well known that rankings induced by search engines af-
fect the corpus content since publishers are often incentivized to
have their documents highly ranked. However, this is a general
observation with no concrete realization — specifically, in terms of
connecting the search engine ranking decisions with their corpus
effects. We present a novel concrete realization: pre-defined, spe-
cific, content effects in the corpus can be relatively easily driven by
applying simple techniques.

It is also important to point out that there is no reason for search
engines to intentionally drive content effects. However, their ability
to do so due to the herding phenomenon has two direct conse-
quences. First, biases of the ranking function — e.g., due to biases in
training data — together with the herding phenomenon can lead to
unwarranted content effects on the corpus. A case in point, using
the cosine measure to rank documents in the vector space model is
known to lead to a bias in favor of short documents [27]. Now, we
show in our experiments that positioning very short documents
at the highest ranks of the retrieved document lists leads, due to
the herding phenomenon, to a document length decrease effect
in a competitive retrieval setting. Second, the ability of a search
engine to drive specific content effects can potentially be abused
by publishers who are interested in driving such effects. Recent
progress in language generation methods facilitates opportunities
for such an abuse. We discuss this issue in Section 5. Hence, when-
ever we write that the search engine can apply the techniques to
drive content effects we mean that it has the ability to do so. The
operational activation of this ability is either due to inherent biases
of ranking functions or abuse by publishers.

In summary, we demonstrate the relative ease by which search
engines in competitive search settings can drive pre-defined, tar-
geted, content effects in the corpus due to ranking incentives of
publishers. This concrete realization of the effects of ranking de-
cisions on corpus content has important implications which we
discuss. The ranking-competitions dataset we created can facilitate
further research on ranking effects in competitive settings.

2 RELATEDWORK
Work on adversarial retrieval has mainly focused on different types
of spamming and methods to address them [1, 10, 15]. In contrast,
we study the ability of search engines to affect corpus content.

Deception and spread of misinformation in content-based plat-
forms, specifically in social networks, was the subject of many
studies (e.g., [7, 14]). Our focus is different: the connection between
search engines’ ranking decisions and content effects on the corpus.

The Facebook experiment [17] showed that the sentiment of
content promoted in users’ feeds affected the sentiment of posts
the users wrote. The search setting we address is different, and our
focus is on other types of content effects.

There are many studies of the interactions between search en-
gines and their users [30], including those of the effects of the

engines on users’ behavior via the advertisements they promote
[34, 35]. In contrast, we study the effects of search engines on the
corpus via the rankings they induce.

There is work on ranking fairness with respect to publishers’
representation in top-retrieved results (e.g., [5, 26, 32, 36]). Our
focus is on the effects of rankings on documents in the corpus.

Herding of publishers, which is an economic/game-theoretic
phenomenon, can already be observed when publishers compete
on their relative ranking with respect to a single query [23]. This
phenomenon occurs due to uncertainty about the ranking function.
Some recent work on search engines and recommendation systems
deals with other game theoretic effects, resembling the ones that ap-
pear in facility location games [3, 4]. As in the single-query setting
that we address in this paper, it was shown that due to competition,
publishers will be inclined to write on similar topics [3, 4]. This
finding is reminiscent of the phenomenon that facilities of competi-
tors are located in similar locations in equilibrium. Interestingly,
the finding holds for a set of queries even if publishers have full
information of the ranking/recommendation function.

Raifer et al. [23] showed that publishers in ranking competitions
tend to mimic content in documents highly ranked in the past for
the same query. This is evidence for the general herding effect. We
study the herding effect from the perspective of leading to specific
content effects and the ability to actively drive them.

3 CONTENT EFFECTS
Our goal is to study the ability of a search engine to drive pre-
defined types of content effects in a corpus upon which search is
performed. This ability relies on the fundamental characteristics
of any competitive search setting (e.g., the Web): some publishers
(authors) of documents are incentivized to have their documents
highly ranked for queries of interest. Hence, they respond to rank-
ings induced for the queries by modifying their documents — a
practice often referred to as search engine optimization (SEO) [15].
We focus on “white-hat SEO” content modifications [15]; i.e., legit-
imate modifications of document content that are not considered
spamming, and more generally, that do not degrade document qual-
ity. Yet, such modifications can certainly have negative effects on
the search eco system as we discuss below.

Our treatment of content effects is on a per-query basis. That
is, we study how the search engine can affect, via the rankings it
induces for a given query, the content of documents whose publish-
ers opt to promote for this query. Obviously, publishers can strive
to promote their documents, simultaneously, for several queries.
We leave the study of driving content effects via induced rankings
for a set of queries for future work.

In Section 3.1 we discuss the types of content effects we explore.
These are examples and do not constitute a complete set of all poten-
tial effects. Section 3.2 presents techniques for driving these effects.
We use 𝑞 and 𝑑 to denote a query and a document, respectively.

3.1 Types of Content Effect
The first type of content effect is with respect to topics discussed in
documents. Suppose that query 𝑞 represents the topic (information
need)𝑇 . We set as a goal for the search engine to affect the treatment
of 𝑇 in documents whose authors are interested in rank promotion



for 𝑞. A concrete example we study here is trying to bias the content
in these documents towards a specific aspect, or sub-topic, 𝑇 𝑠𝑢𝑏 of
𝑇 . Accordingly, we term this type of content effect Sub-Topic.

For example, consider TREC topic #167 from the ClueWeb09 col-
lection. The description of the information need (topic), 𝑇 , is: “Find
information on Barbados history”. Two of the sub-topics, 𝑇 𝑠𝑢𝑏

1 and
𝑇 𝑠𝑢𝑏
2 , for this topic are described as: “What does the Barbados flag
look like?” and “‘Suggest tourist activities in Barbados”, respectively.
The topic title, “barbados”, serves for the query 𝑞. The question we
explore below is how the search engine can drive publishers inter-
ested in rank promotion for 𝑞 to focus on one of the two sub-topics.

While documents written on𝑇 𝑠𝑢𝑏
1 and𝑇 𝑠𝑢𝑏

2 are relevant to𝑇 , the
sub-topic focus just described results in potential loss of valuable
information in the corpus. Namely, if one assumes that, a-priori,
both sub-topics are discussed in documents in the corpus, then the
topical coverage in the corpus is reduced. The direct consequence
is hurting, in the long run, the effectiveness of any search intended
for finding information about the sub-topic which the publishers
drift away from; i.e., the one not driven by the search engine.

The Sub-Topic effect results in different coverage of sub-topics of
𝑇 , but does not necessarily reduce the overall amount of information
in the corpus that pertains to𝑇 . We thereby take a step forward and
study the ability of the search engine to inflict more harm in terms of
topical coverage in the corpus; specifically, to drive the reduction of
the amount of content relevant to𝑇 .3 To this end, we introduce the
Not-Relevant content-type effect: driving publishers with rank-
promotion incentive for 𝑞 to write documents not relevant to 𝑇 .
These documents can naturally still include 𝑞’s terms and exhibit
other properties that result in having them highly ranked for 𝑞, but
their content cannot satisfy the information need about 𝑇 .

The types of content effects we consider next touch on two fun-
damental building blocks of classical retrieval methods which rank
documents by surface-level similarity to the query [13]; namely,
term frequency and document length. The Doc-Length effect sim-
ply refers to the impact on document length. The Query-Terms
effect refers to the extent of occurrences of terms from the query, 𝑞,
in a document whose publisher wants to rank-promote for 𝑞. Our
goal here is to study whether the search engine can drive publishers
to reduce the number of query-term occurrences in documents. This
type of a change stands in clear contrast to the common wisdom of
publishers about relevance ranking functions; i.e., that they reward
documents containing many occurrences of query terms. Indeed, a
common SEO technique is keyword stuffing: adding query terms to
documents [15]. Thus, the goal is to study whether a search engine
can actually drive a content effect which contradicts the common
belief of publishers about relevance ranking functions.

3.2 Approaches for Driving Content Effects
We next describe approaches that a search engine can employ to
drive content effects; specifically, the four types discussed above.

3.2.1 Herding. The first approach we consider is inspired by recent
work on analyzing the strategies employed by publishers who have

3We write “reduction” and not “elimination” as we operate within the scope of a single
query and other queries might target the same topic. Furthermore, there could be
publishers with no rank incentives who are not affected by induced rankings.

rank-promotion incentives [23]. An important result of a game the-
oretical analysis of the “ranking competition” between publishers
was as follows: a publisher who opts to promote her document in
rankings induced for query 𝑞 should mimic documents that were
highly ranked for 𝑞 in the past [23]. Empirical analysis of ranking
competitions provided support for this finding [23]. The simple
intuitive rationale behind this “mimicking” strategy is that given
that the ranking function is not known to publishers, the rankings
they observe — of their documents and others — are essentially the
only (implicit) signal about the ranking function.

Interestingly, the mimicking strategy just described is a specific
example of the celebrated herding model from an exciting branch
of the economics literature [2, 6, 28]. The literature refers to a para-
digm known as the wisdom of the crowd; it suggests that a population
can aggregate knowledge from individuals to collectively learn new
things. A well established negative result from that literature is
that whenever agents have full observability of selected actions of
others, a herd may form on an inferior alternative. This phenome-
non is often referred to as an information cascade: an information
cascade occurs when an initial set of agents is ill-informed. As a
result, these agents take some inferior action. Subsequent agents
are then convinced that the aforementioned action is optimal and
so dismiss their own private information and follow the herd by
taking the inferior action as well. In our setting, publishers are
the agents who are ill-informed about the ranking function and
who follow the herd by mimicking documents highly ranked. The
inferior alternatives they herd on can be, for example, focusing on
specific sub-topics or not producing relevant information as in the
content-type effects described in Section 3.1.

Following the observations about the mimicking strategy [23]
and the herding phenomenon [2, 6, 28], we apply the following
simple approach, denotedHerding, for driving content effects. For
query𝑞, wemanually create a document𝑑 that manifests the type of
content effect the search engine opts to drive. Then, 𝑑 is positioned
at the highest rank of any ranking induced for 𝑞, regardless of
its actual retrieval score. That is, the approach is agnostic to the
ranking function employed by the search engine.We note that using
several manually created documents per query and determining
their positions is a study left for future work.

For the Sub-Topic effect, the document 𝑑 is written so that it is
relevant to the sub-topic 𝑇 𝑠𝑢𝑏 the search engine wants the publish-
ers to focus on; hence, the document is also relevant to the topic
𝑇 that 𝑞 represents . We take care that 𝑑 is not relevant to other
(given) sub-topics of 𝑇 so as to further highlight the potential topic
drift that the search engine drives.

For the Not-Relevant effect, we create a document which con-
tains 𝑞’s terms, but is not relevant to the topic 𝑇 that 𝑞 represents.
Such non-relevant documents are often highly ranked by retrieval
methods based on document-query surface-level similarities.

For Doc-Length we create a short relevant document, and for
Query-Termswe create a relevant document which does not contain
any of the query terms. (This is mainly done by using abbreviations
and language that avoids using the query terms.)

It is important to make the following observations about the
Herding approach. First, if 𝑑 is kept as is at the first rank along time,
then publishers will figure out that straightforward mimicking of 𝑑



does not necessarily lead to improved ranking, and more generally,
that external intervention takes place. This is because 𝑑 is not nec-
essarily assigned a (very) high retrieval score, which will also be the
case for documents mimicking it. To address this issue, one should
engineer 𝑑 — using the full knowledge of the ranking function —
so that it not only manifests the desired content effect, but it is also
assigned a very high retrieval score. Furthermore, 𝑑 can be changed
along time, and so does the rank at which it is positioned, to avoid
suspicions of the publishers. We leave the exploration of these di-
rections for future work and focus on the fundamental Herding
principle. To that end, in the experiments with iterative ranking
competitions reported in Section 4.2, we demonstrate the impact
of the approach when used for very few iterations (i.e., short time
span). This short span effect is along the lines of the herding litera-
ture mentioned above [2, 6, 28] which deals with a single decision
made by agents, rather than a repeated one.

3.2.2 Biasing the Ranking Function. In the Herding approach, pub-
lishers have an explicit example — the highest ranked document 𝑑
— to follow towards the desired content effect. The next approach,
termed Biasing, is based on providing the publishers with an im-
plicit signal about the desired effect by biasing the relevance ranking
function. For example, documents can be rewarded also based on
the extent to which they manifest the desired content effect. Hence,
changes that publishers introduce to documents and which are
aligned with this effect will result in improved ranking.

A basic approach to biasing a ranking function is biasing the
training data used to learn the function. It is easy to bias the training
data for the four content-effect types discussed in Section 3.1: one
can reward, via boosting of relevance grades, the documents that
manifest the effect. For the Sub-Topic effect, the relevance grades
of documents relevant to the sub-topic the engine wants to focus
on should be increased. For the Not-Relevant effect, non-relevant
documents (but with high surface-level query similarity) should
be assigned high relevance grades and relevant documents should
be assigned low relevance grades. For the Doc-Length and Query-
Terms effects, the relevance grades of short relevant documents and
those of relevant documents which include very few occurrences
of the query terms, respectively, should be increased.

As a proof of concept, we present an alternative unsupervised
approach to biasing the ranking function for the Sub-Topic effect.
Specifically, since our focus is on content effects, we devise a rank-
ing function that is solely based on content. The retrieval scores
assigned to documents by this function can be incorporated in
feature-based learning-to-rank approaches so as to bias them [19].

Let 𝑞 be a query representing topic 𝑇 , and suppose that the goal
is to have publishers focus on sub-topic𝑇 𝑠𝑢𝑏

𝑖
of𝑇 . We assume a set

of documents S
𝑇 𝑠𝑢𝑏
𝑖

which were judged as relevant to 𝑇 𝑠𝑢𝑏
𝑖

.4 Then,
we construct a unigram relevance language model from S

𝑇 𝑠𝑢𝑏
𝑖

[18]:

𝑝 (𝑤 |𝑅) 𝑑𝑒𝑓= 1
|S

𝑇 𝑠𝑢𝑏
𝑖

|
∑︁

𝑑′∈S
𝑇𝑠𝑢𝑏
𝑖

𝑝 (𝑤 |𝑑 ′), (1)

where 𝑝 (𝑤 |𝑅) is the probability assigned to term𝑤 by the relevance
model 𝑅 and 𝑝 (𝑤 |𝑑 ′) is the probability assigned to𝑤 by a (Dirichlet)
4This assumption corresponds to the scenario that the search engine received in the
past the query 𝑞 and relevance judgments were accordingly produced.

Table 1: Summary of the ranking competitions.

Competition Effect Approach Ranking Function # Competitions

Pa
rt
I Control None None LambdaMART 30

STH Sub-Topic Herding LambdaMART 60
STB Sub-Topic Biasing RM1 60

Pa
rt
II NRH Not-Relevant Herding LambdaMART 30

DLH Doc-Length Herding LambdaMART 30
QTH Query-Terms Herding LambdaMART 30

smoothed language model induced from 𝑑 ′.5 To rank document 𝑑
using 𝑅, we use the negative cross entropy:

𝑆𝑐𝑜𝑟𝑒 (𝑑 ;𝑞) 𝑑𝑒𝑓= −𝐶𝐸 (𝑝 (·|𝑅) | | 𝑝 (·|𝑑)) =
∑︁
𝑤

𝑝 (𝑤 |𝑅) log 𝑝 (𝑤 |𝑑) .

(2)
Increased values of the cross entropy correspond to decreased
language-model similarity. Hence, a document𝑑 whose induced lan-
guage model is similar to the relevance model induced for sub-topic
𝑇 𝑠𝑢𝑏
𝑖

will be rewarded. This will presumably incentivize publishers
to emphasize 𝑇 𝑠𝑢𝑏

𝑖
in documents they want to promote for query 𝑞.

We point out that the specific choice of a relevance model to
represent sub-topic 𝑇 𝑠𝑢𝑏

𝑖
entails an implicit herding/mimicking

effect. That is, changing document 𝑑 to increase its retrieval score
means that its induced language model becomes more similar to 𝑅.
Now, 𝑅, as defined in Equation 1, is an arithmetic centroid in the
simplex of the language models induced from the documents in
S
𝑇 𝑠𝑢𝑏
𝑖

which represent𝑇 𝑠𝑢𝑏
𝑖

. Hence, to promote their documents in
a ranking induced for 𝑞, publishers should essentially make them
become more similar to a pseudo document that represents 𝑇 𝑠𝑢𝑏

𝑖
.

An additional perspective can be gained by plugging Equation 1 in
Equation 2 and re-arranging the summations:

𝑆𝑐𝑜𝑟𝑒 (𝑑 ;𝑞) 𝑑𝑒𝑓= − 1
|S

𝑇 𝑠𝑢𝑏
𝑖

|
∑︁

𝑑′∈S
𝑇𝑠𝑢𝑏
𝑖

𝐶𝐸 (𝑝 (𝑤 |𝑑 ′) | | 𝑝 (𝑤 |𝑑)) . (3)

That is, the retrieval score of 𝑑 is the average negative cross entropy
between language models induced from documents 𝑑 ′ in S

𝑇 𝑠𝑢𝑏
𝑖

and
𝑑’s induced language model. Thus, promoting 𝑑 in a ranking means
making it more similar to these representatives of 𝑇 𝑠𝑢𝑏

𝑖
which the

publisher is not aware of. This is in contrast to the explicit Herding
effect from Section 3.2.1 where publishers observe the document
most highly ranked which was “planted” there by the search engine.

We note that regardless of the ranking function being biased,
publishers are somewhat likely to mimic the documents most highly
ranked for the query in the past [23]. With the proposed relevance-
model-based biasing, these documents were highly ranked due to
high similarity to the sub-topic representative documents (S

𝑇 𝑠𝑢𝑏
𝑖

),
as discussed above. Thus, we get a double mimicking/herding effect:
making a document similar to those highly ranked in the past makes
the document become more similar to documents representing the
sub-topic of interest.

5Uniform weighting of documents for constructing a relevance model from true rele-
vant documents is superior to other weighting approaches [18, 22]. We use relevance
model #1 (RM1) and do not interpolate it with the original query model (RM3) as our
experiments showed that the resultant effect is stronger for RM1.



Table 2: Example of documents created for topic #167, which is represented by the query “barbados”. 𝑇 : “ Find information
on Barbados history.” 𝑇 𝑠𝑢𝑏

1 : “What does the Barbados flag look like?”. 𝑇 𝑠𝑢𝑏
2 : “Suggest tourist activities in Barbados.”

Effect Document

Initial Document “The island of Barbados is located at 13.4N and 54.4W and is situated in the western area of the North Atlantic Ocean and 100 kilometers east of the Windward Islands and the Caribbean
Sea. The island is seen by most scientists as geologically unique as it was formed as a result of an amalgamation of two land masses over a period of many years. The peaceful Arawaks and
the more ferocious Caribs were the first inhabitants of Barbados...”

Sub-Topic (𝑇𝑠𝑢𝑏
1 ) “Barbados flag consists of a triband of two bands of ultramarine, which are said to stand for the ocean surrounding the country and the sky, separated by a golden middle band, which

represents the sand. A black trident head, commonly called the broken trident, is centered in the golden band, and the fact that the staff is missing is significant. The trident symbol was
taken from Barbados colonial badge, where the trident of Poseidon is shown with Britannia holding it...”

Sub-Topic (𝑇𝑠𝑢𝑏
2 ) “Barbados is one of the most popular destinations for vacation in the Caribbean, due to its beautiful scenery and high standard of living. There are many excursions for travelers to this

island nation to take advantage of, no matter what their travel interests may be. One place tourists will want to go in Barbados is Harrisons Cave...”

Not-Relevant “Barbados is known for two pirates of the Caribbean - Sam Lord and Stede Bonnet. Stede Bonnet - Known as the pirate gentleman, Stede Bonnet became one of the pirates of the Caribbean
in a most unusual way! A retired British army major and well off plantation owner in Barbados, the middle aged Major Stede Bonnet suddenly turned to piracy in early 1717 and actually
purchased his own pirate ship, an unheard of act among the pirates of the Caribbean!”

Doc-Length “The limestone rock has created the island of Barbados, and the land area of the isle measures 166.4 square miles (431 km2). It is 21 miles (34 kilometers) in length and 14 miles (23 kilometers).”

Query-Terms “The island of Bimshire is located at 13.4N and 54.4W and is situated in the western area of the North Atlantic Ocean and 100 kilometres east of the Windward Islands and the Caribbean
Sea. The island is seen by most scientists as geologically unique as it was formed as a result of an amalgamation of two land masses over a period of many years. The peaceful Arawaks and
the more ferocious Caribs were the first inhabitants of Bimshire...”

4 EMPIRICAL EXPLORATION
4.1 Experimental Setting
To empirically evaluate the content effects presented in Section 3.1
and the techniques proposed in Section 3.2 to drive them, we orga-
nized content-based ranking competitions between students in the
spirit of those recently used to analyze publishers’ strategies [23].
The competitions were approved by an international and an institu-
tional ethics committees. The students who decided to participate
signed consent forms and could have opted out at any point.

The competitions are divided to two parts as summarized in Ta-
ble 1. Each competition in each part is a repeated ranking match for
a given query that spans five iterations. A match is described below.
In the first part, we applied the Herding and Biasing approaches
to drive the Sub-Topic effect; these competitions are referred to as
STH and STB, respectively. During this part we held additional
Control competitions that did not involve any external interven-
tion. In the second part, we applied the Herding approach to drive
the Not-Relevant, Doc-Length, and Query-Terms effects. These
three types of competitions are denoted NRH, DLH and QTH.

One hundred students in an information retrieval course partici-
pated in the competitions in two different semesters. Fifty students
participated in each semester. The two-parts structure of the com-
petitions was identical in both semesters. The quantitative findings
for the two semesters were very similar. We report the overall quan-
titative findings over the two semesters.6 We used 30 out of the 31
queries used by Raifer et al. [23]7. These queries were originally
selected from the TREC 2009-2012 topic titles [23]; the topics were
selected as they had a commercial intent which was likely to stir
up a competition between the students [23].

In each of the two parts of the competitions, a student was
assigned to three queries — each in a different competition — which
differ between the two parts. In both parts, each student participated
in at least two different types of competitions. (There are six types
of competitions described in Table 1.)

6Note that each competition in each semester was held separately from the others.
The students did not know against whom they were competing as we describe below.
7Query (topic) #002 was randomly chosen to not be used.

For each of the Sub-Topic-effect types of competitions (STH and
STB), two independent competitions were held per query. Each
competition focused on one of the two sub-topics considered for
the query which were selected from those of TREC. This resulted
in 60 competitions for the Sub-Topic effect. For all other types of
competitions, a single competition was held per query resulting in
30 competitions. All in all, we ran 240 competitions of 5 iterations,
each focused on a single query.

Before each competition started, we provided the students with
a query and an initial relevant document. (Details about the initial
documents are provided below.) In each iteration (match), students
were presented with the content and the ranking of the documents
submitted in the previous iteration by all the participants in the
same competition. The students were incentivized by bonuses to
course grades to modify their documents so as to potentially pro-
mote them in the ranking induced in the next iteration. (Students
could have received the perfect grade in the course without partici-
pating in the competitions.) The documents were plain text of up
to 150 terms.

Two students participated in each competition.8 To maintain
lively and dynamic competitions, we artificially added to each pair
of students three additional players so that the students will see
rankings induced over five documents.9 Each such “player” imper-
sonated one of the students that participated in the competition
reported in Raifer et al. [23]10 with the following exception. If the
student remained passive in one of the iterations and did not modify
her document in the competition held in [23], we randomly selected
a document from those submitted by other students for the same
query in the corresponding iteration.

The students’ identities were anonymized throughout the com-
petitions. Hence, they did not know who their opponents were, and
were not aware of the fact that only one of their opponents was a
real student. The analysis presented in Section 4.2 is based solely on

8Each pair of students competed against each other in at most one competition.
9In the herding experiments described below, only two players were added as the
biased document driving the herding was positioned at the first rank of the ranking.
Hence, there were five documents in each match. Further details are provided below.
10All the documents are available at https://github.com/asrcdataset/asrc.

https://github.com/asrcdataset/asrc


the documents created by the students who actually participated in
the competition, and not those created by the additional “players”.

Documents. We used the same initial example document in all
the different competitions held for a query 𝑞. We required the initial
document to be relevant — according to TREC’s topic description
— to the topic 𝑇 that 𝑞 represents and non-relevant to the two
selected sub-topics, 𝑇 𝑠𝑢𝑏

1 and 𝑇 𝑠𝑢𝑏
2 . If a previously published initial

document [23] did not meet these relevance requirements, and
could therefore not be used for our competitions, we created a new
document using text snippets that were retrieved for the queries
by a commercial search engine.

For the Herding experiments, we created documents — to be
shown at the highest rank — that manifested the four types of
content effects that we wanted to drive as follows. For the STH
competitions, we created two biased documents for each query:
one of the documents focused on sub-topic 𝑇 𝑠𝑢𝑏

1 and the other on
sub-topic 𝑇 𝑠𝑢𝑏

2 . Hence, we have 60 STH competitions in total (30
queries × two competitions per query). In these competitions we
positioned the biased documents at the top of the presented rank-
ings to drive the Sub-Topic effect. The ranking over the documents
participating in a competition was induced using the LambdaMART
ranking function described below. In contrast, in the corresponding
60 STB competitions, to drive the same effect, we used a sub-topic
biased relevance model to rank the documents participating in the
competition; the relevance model was induced using Equation 1 for
one of the sub-topics using documents relevant to this sub-topic.
We also verified that the biased document focusing on 𝑇 𝑠𝑢𝑏

1 was
ranked higher than the biased document focusing on 𝑇 𝑠𝑢𝑏

2 by a
biased relevance model induced for sub-topic 𝑇 𝑠𝑢𝑏

1 , and vice versa.
In addition, in the first iteration before revealing the ranking of
documents to the students, we verified that each biased document
would have been ranked first in the STB competition when using
the corresponding relevance model. For the NRH competitions, we
created non-relevant documents that contained query terms. For
DLH we created short relevant documents and for QTH relevant
documents that did not contain query terms. Each document that
was created for a competition was evaluated by three annotators.
Table 2 shows examples of documents created for the competitions.

Ranking Functions. We used Category B of the ClueWeb09 collec-
tion with topics 1-200 from TREC 2009-2012 to devise the ranking
functions. Topic titles were used as queries. We applied Krovetz
stemming to all documents and queries, and removed stopwords
on the INQUERY list from queries only. The experiments were
performed using the Indri toolkit (www.lemurproject.org/indri).

For all the competitions except for STB, we followed the ap-
proach used in [23] to learn a ranking function. Specifically, we
used a learning-to-rank approach, where each query-document pair
was represented by a vector of 26 content-based features. Most of
the features are based on those used in Microsoft’s learning-to-rank
datasets11. The model was trained using the top 1000 documents
in a ranking produced using a language-model-based approach
(LM): the negative cross entropy between the unsmoothed unigram
query language model and the Dirichlet-smoothed (with ` = 1000)

11https://tinyurl.com/rmslr

document language models. Similarly to Raifer et al. [23], we delib-
erately did not filter out spam documents, i.e., those assigned a low
score by Waterloo’s spam classifier [11]. Instead, we used Water-
loo’s score as a feature. Because these scores are not available for
the documents used in our competitions, we did the following. Five
annotators in Figure Eight (www.figure-eight.com) labeled each
document as valid, keyword stuffed or spam. Then, to simulate Wa-
terloo’s classification scores, we used 20𝑣 , where 𝑣 is the number of
annotators that marked the document as valid. Since 0 ≤ 𝑣 ≤ 5, the
scores we get are in [0, 100], as is the case for the original Waterloo
scores. Thus, the ranking model was trained using Waterloo’s spam
scores, and applied using the human-created scores.

We used LambdaMART [31] via the RankLib library (https://
sourceforge.net/p/lemur/wiki/RankLib) to learn the model. We ran-
domly split the queries into four folds. Three folds were used to train
the model and the remaining fold to set hyper-parameter values;
NDCG@5 served as the optimization metric. The number of trees
and leaves in LambdaMART were set to 250 and 50, respectively,
following experiments with values in {250, 500} and {5, 10, 25, 50}.

The relevancemodel (RM1) for the STB competitions (Equation 1)
was constructed from five randomly sampled relevant documents
per sub-topic. To set the number of expansion terms, we created
relevance judgments as follows. The five documents from which
the relevance model was constructed were considered “relevant”.
Five documents that were relevant to the topic, but not to the sub-
topic in question and were assigned the highest LM score (see
above) were considered “non-relevant”. The number of expansion
terms was set to 100 to optimize the NDCG@5 of a ranking over
the ten “judged” documents, following experiments with values in
{10, 25, 50, 100}.

All the documents created by students throughout the competi-
tions were judged for relevance with respect to a query’s topic by
five annotators in Figure Eight. In addition, documents created in
the Sub-Topic-effect competitions were also judged for relevance
with respect to the two selected sub-topics. For the STB and STH
competitions, queries #144 and #164 were removed from the final
analysis due to lack of available sub-topics.

The statistical significance of the difference between two sets of
30 competitions (each held for a different query) with respect to a
measure/effect is determined using a paired permutation (random-
ization) test with 𝑝 = 0.05; 100000 permutations were randomly
sampled. Pairing is done with respect to queries and iterations.
The value of the measure/effect per query and iteration is the aver-
age value for the two documents of the two participating students.
Bonferroni correction was applied for multiple comparisons.

4.2 Experimental Results
4.2.1 The Sub-Topic Effect. To drive the Sub-Topic effect we used
the Herding and Biasing approaches in the STH and STB competi-
tions, respectively. For a given query, we selected two sub-topics
and held a competition with respect to each. Only one sub-topic
was “active” in a given competition; i.e., the sub-topic was the focus
of the highest ranked document in STH (which was biased) or of
the biased relevance model (Equation 1) used for document ranking
in STB. The second selected sub-topic in this competition was “pas-
sive”; i.e., no “driving” with respect to this sub-topic was performed.

www.lemurproject.org/indri
https://tinyurl.com/rmslr
www.figure-eight.com
https://sourceforge.net/p/lemur/wiki/RankLib
https://sourceforge.net/p/lemur/wiki/RankLib


A and P denote the active and passive sub-topics. Thus, for each
topic, there was one competition where one sub-topic was active
and the other one passive and one competition in which the reverse
holds. Accordingly, we have equal representation for each of the
two sub-topics of a topic as active and passive in the competitions.

To measure the extent of documents becoming focused on a
sub-topic, we can measure the relative similarity of their induced
language models to the sub-topic biased relevance models.12 How-
ever, the sub-topic biased relevance models also encode information
about the topic as a whole. To distill the information specific to the
sub-topic with respect to the entire topic, and use that information
to measure similarities to sub-topics, we utilized a two compo-
nent mixture model described in Appendix A to induce a distilled
sub-topic model. Then, similarity of a document to a sub-topic is
measured based on the negative cross entropy between the distilled
sub-topic model and the document language model. In addition, we
analyze the cosine similarity between the TF-IDF vectors represent-
ing a student’s document and the biased (planted) documents in the
STH competitions. The different similarity scores are averaged over
documents per match and over queries per iteration. We present
for reference the results for the Control competitions where the
similarity scores to both sub-topics were averaged.

We see in Figure 1 that most similarities increase along the
iterations regardless of the distilled models or biased documents
used. Even in the Control competitions, which did not involve any
external intervention, a general moderate upward trend is observed.
The average language-model-based similarity of a document to
a distilled active sub-topic is almost always higher than that for
the distilled passive sub-topic (STB-A vs. STB-P and STH-A vs.
STH-P in the top figure); the gap between these two similarities
almost always increases along the iterations and is, on average,
statistically significant for the STB competitions. The language-
model-based similarity for STB-P is also higher (in a statistically
significant manner) than the average similarity to both sub-topics
in the Control group.13 These findings suggest that the topics of
the documents created by students gradually shifted towards the
active sub-topic to a larger extent compared to the passive sub-topic
in both approaches for driving the Sub-Topic effect (Herding and
Biasing). In comparing STB-A with STH-A, we see that the former
posts higher similarities which means that the Biasing approach is
more aggressive in driving the Sub-Topic content effect than the
Herding approach.

We also see in Figure 1 (bottom) that in the STH competitions,
documents written by students are much more similar to the biased
document which focuses on the active sub-topic andwhich is shown
at the top of the ranking than they are to the document biased to the
passive sub-topic which they were not shown (STH-A vs. STH-P).
The differences are statistically significant. These findings further
attest to a herding effect.

12In both STH and STB, the documents became more similar to the active sub-topic
than to the passive sub-topic in terms of language models. These results are omitted
as they exhibited similar patterns, although to a somewhat less emphasized extent,
than those presented below.
13In the Control groups there is no herding or biasing of the ranking function. Hence,
similarities are computed for both sub-topics and are then averaged.
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Figure 1: The Sub-Topic effect. Top figure: the average lan-
guage model similarity (negative cross entropy) between a
document and a distilled sub-topic model in the STH and
STB competitions. {STH,STB}-{A,P} refers to the similarity
in the STH/STB competitions to the distilled model induced
for the active (A) or passive (P) sub-topic. Bottom figure: av-
erage cosine similarity with the documents biased for the
active (STH-A) and passive (STH-P) sub-topics in the STH
competitions. Both figures: in the Control competitions, the
average similarity is computed for both sub-topics (A and
P). In terms of -CE, STB-A is statistically significantly differ-
ent from STB-P and Control. In terms of Cosine, STH-A is
statistically significantly different fromControl and STH-P.
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Figure 2: The average number of relevant labels assigned to
documents with respect to a query’s topic (top) and the two
sub-topics (bottom). STB is statistically significantly differ-
ent from both Control and STH. STH-A is statistically signif-
icantly different from STH-P and STB-P.

To summarize, both the Herding and Biasing approaches were
effective in driving the Sub-Topic effect with the latter being some-
what more effective.
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Figure 3: The Not-Relevant effect: average number of rele-
vant labels per document and iteration. NRH is statistically
significantly different from DLH, QTH and Control.

Relevance. As noted in Section 4.1, all the documents created by
students for a querywere annotated by five annotators for relevance
with respect to the query’s topic and the two sub-topics. Figure 2
presents the average number of relevant labels (per topic and sub-
topic) assigned to a document.

We see in Figure 2 (top) that in the STH competitions, the rele-
vance of documents to the query’s topic (top figure) substantially
decreased until iteration three and then rised a bit, but to a level
quite lower than that at the first iteration. In contrast, in the STB
competitions, the relevance level at iteration five was almost as that
as at the first iteration, albeit fluctuations along the iterations.

Figure 2 (bottom) shows that the relevance to both sub-topics, in
both STH and STB, overall increased from iteration one to iteration
five. This is in line with the sub-topic-based similarity findings
presented above. The most prominent increase is for STH-A whose
results are statistically significantly higher than those for STH-
P. In contrast, the difference between STB-A and STB-P is not
statistically significant. Thus, while both the Herding and Biasing
approaches drove the Sub-Topic effect, the former also helped more
in increasing relevance for the target (active) sub-topic.

4.2.2 The Not-Relevant Effect. The Not-Relevant effect was driven
in the NRH competitions using the Herding approach. Non-relevant
documents were positioned at the top of the presented rankings.
Figure 3 presents the average number of relevant labels assigned to
the students’ documents in each iteration. For reference, we show
the results for the (i) Control competitions, in which no external
interventions were performed, and (ii) the DLH and QTH compe-
titions, in which two other content effects were driven using the
Herding approach. In the Control, DLH and QTH competitions
we observe fluctuations in the average number of relevant labels
assigned to documents; but, the number for the first iteration is not
very different than that for the last iteration. Recall that the stu-
dents had no incentive to produce relevant documents, but rather
documents that are highly ranked.

Strikingly, we see in Figure 3 that for NRH there is a sharp decline
in the number of relevant labels which results in a statistically
significant difference with all other three competitions. This finding
shows that using a rather simple Herding approach, a search engine
can lead to a substantial reduction of the amount of relevant content
for a specific topic in the corpus.

4.2.3 The Doc-Length Effect. Thus far, we showed that search en-
gines can affect the coverage of topics in a corpus. We now turn to
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Figure 4: The Doc-Length effect. DLH is statistically signifi-
cantly different from NRH, QTH and Control.
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Figure 5: The Query-Terms effect. We present for each it-
eration the average percentage of query terms appearing
in a document (QueryCover) and the average percentage of
terms in a document that are query terms (FracQuery). QTH
is statistically significantly different from NRG, DLH and
Control for both QueryCover and FracQuery.

study the ability of search engines to drive surface-level changes
in the corpus. We examine the DLH competitions in which short
relevant documents were positioned at the top of the rankings to
drive the Doc-Length effect.

Figure 4 shows for each iteration the average length of students’
documents across the queries. We see that in the DLH competitions,
the document length sharply decreased during the first four itera-
tions. On average, the document length in these competitions was
statistically significantly lower than that in the other three compe-
titions which attests to a clear herding effect. The mild increase of
document lengths in the fifth iteration of the DLH competitions can
potentially be explained as follows: students started noticing that
further shortening the documents does not help them to promote
them for two reasons: (i) the topmost document throughout the iter-
ations was the biased one we planted, and (ii) the ranking function
we employed does not necessarily reward short documents.

We also see in Figure 4 a gradual decrease of document length in
the QTH, Control and NRH competitions, with the latter exhibiting
the largest decrease of the three. The finding about NRH can be ex-
plained by the fact that the non-relevant documents we planted to



drive the Not-Relevant effect via herding, were on average shorter
than the initial relevant documents provided to the students as
examples (118.6 terms vs. 133.1 terms). Hence, there was a double
herding effect in the NRH competitions: documents were made
shorter and less relevant. Still, the length decrease is statistically
significantly smaller than that for DLH where the planted docu-
ments were of an average length 30.3 terms. For QTH and Control
the planted documents were of similar length to that of the example
relevant documents, which could potentially help to explain the
very mild length decrease in these competitions.

To summarize, the shorter the documents we posted at the top
of the ranking, the shorter the documents created by the students
were. This finding attests to a clear herding effect.

4.2.4 The Query-Terms Effect. To drive the Query-Terms effect in
the QTH competitions, relevant documents that do not contain
query terms were positioned first in the rankings presented to
students. In Figure 5 we show the percentage of query terms that
appear in a document (QueryCover) and the percentage of terms
in a document that are query terms (FracQuery). The values are
averages over documents and queries per iteration.

Figure 5 shows that in the QTH competitions, there is a substan-
tial downward trend for both QueryCover and FracQuery along
the first few iterations and then some increase in the last itera-
tion or two. The initial decrease together with the — statistically
significantly different — upward trend observed for NRH, DLH
and Control, attests to an herding effect in the QTH competitions.
This finding is quite striking: while the participating students knew
about the importance of query-terms occurrence in documents as a
relevance signal in virtually all retrieval methods, they inferred that
the biased document was ranked first due to not having query terms;
hence, they reduced query term occurrences in their documents.

The increase of values in the last iteration or two in the QTH
competitions can be explained as follows. The ranking function
used in all the herding-based competitions rewards query terms
occurrence as the features it uses are based on textual document-
query similarities. In fact, QueryCover is one of the features used in
the learning-to-tank model. (Refer back to Section 4.1 for details.)
This explains, for example, the upward trend for the NRH, DLH
and Control competitions. Now, presumably, students that removed
query terms from their documents in the first few iterations of the
QTH competitions following the planted document, did not manage
to promote their documents in rankings. On the contrary, some of
these documents were demoted.

5 DISCUSSION
Heretofore, we have focused on the ability of search engines to
drive pre-defined, targeted, content effects. There is obviously no
reason for search engines to employ such practices. However, this
ability can potentially be abused by publishers as we discuss next.

Say that a publisher is interested in promoting a content effect
in the corpus. She can then write a document that manifests the
effect and try to optimize it with respect to the ranking function. If
successful in having her document ranked first, the publisher can
potentially affect the content other publishers produce due to the
herding phenomenon.

In the experiments we reported in Section 4, documents we
planted at the first rank which manifested specific content effects
were manually selected and modified to this end. However, we
argue that with the progress in language generation capabilities
based on pre-trained language models (e.g., BERT [12], XLNet [33],
GPT3 [8], etc.), this challenge will become easier along time. For
example, “high quality” fake news were generated using advanced
language generation techniques [37].

6 CONCLUSIONS AND FUTUREWORK
We presented a first study of simple techniques that search engines
can employ to drive pre-defined targeted content effects in the
corpus via the rankings they induce. The first is based on the herd-
ing phenomenon from the economics literature, and the second is
based on biasing the ranking function. We explored topical effects
and several document-property effects. Analysis of content-based
ranking competitions we organized demonstrated the ability of a
search engine to drive these effects using the suggested techniques.
The concern is not that search engines will actually deploy such
techniques, but rather that documents’ authors will use the engines
as platforms to applying such techniques.

For future work we plan to study herding effects, both theoreti-
cally and empirically, when publishers optimize their documents
for multiple queries; i.e., going beyond the single-query setting
addressed here and by Raifer et al. [23].
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A DISTILLING SUB-TOPIC MODELS
To distill a unigram language model, \

𝑇 𝑠𝑢𝑏
𝑠

, that represents the
unique information in a sub-topic 𝑇 𝑠𝑢𝑏

𝑠 with respect to the more
general topic 𝑇 , we use a mixture model (cf., [38]):

logL 𝑑𝑒𝑓
=

∑︁
𝑑𝑖 ∈𝑇 𝑠𝑢𝑏

𝑠

∑︁
𝑤∈𝑑𝑖

𝑡 𝑓 (𝑤 ;𝑑𝑖 ) log((1−_)𝑝 (𝑤 |\
𝑇 𝑠𝑢𝑏
𝑠

) +_𝑝 (𝑤 |𝑇 ));

L is the likelihood function;𝑑𝑖 ∈ 𝑇 𝑠𝑢𝑏
𝑠 are all documents (in TREC’s

qrels files) marked as relevant to 𝑇 𝑠𝑢𝑏
𝑠 ;𝑤 is a term; 𝑡 𝑓 (𝑤 ;𝑑𝑖 ) is the

number of times 𝑤 appears in 𝑑𝑖 ; _ is a free parameter; 𝑝 (𝑤 |𝑇 )
is the probability assigned to term 𝑤 by a maximum likelihood
estimate induced from all documents marked as relevant to 𝑇 (in
TREC’s qrels files). We use the EM algorithm to infer \

𝑇 𝑠𝑢𝑏
𝑠

— i.e.,
set 𝑝 (𝑤 |\

𝑇 𝑠𝑢𝑏
𝑠

) for each term𝑤 .
To compute the cross-entropy-based similarities between a dis-

tilled sub-topic model \
𝑇 𝑠𝑢𝑏
𝑠

and a document language model (see
Section 4.2.1), we clip (and normalize) \

𝑇 𝑠𝑢𝑏
𝑠

(cf. [38]) to use the 𝛼
terms to which it assigns the highest probability. The procedure
that was used to set the number of expansion terms in the relevance
model (see Section 4.1) was also used to set 𝛼 (∈ {10, 25, 50, 100})
and _ (∈ {10, 25, 50, 100}).
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