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In robust decision making under uncertainty, a natural choice is to go with safety (aka security) level
strategies. However, in many important cases, most notably auctions, there is a large multitude of
safety level strategies, thus making the choice unclear. We consider two refined notions:

• a term we call DSL (distinguishable safety level), and is based on the notion of “discrimin”
[7], which uses a pairwise comparison of actions while removing trivial equivalencies. This
captures the fact that when comparing two actions an agent should not care about payoffs in
situations where they lead to identical payoffs.

• The well-known Leximin notion from social choice theory, which we apply for robust decision-
making. In particular, the leximin is always DSL but not vice-versa [7].

We study the relations of these notions to other robust notions, and illustrate the results of their
use in auctions and other settings. Economic design aims to maximize social welfare when facing
self-motivated participants. In online environments, such as the Web, participants’ incentives take
a novel form originating from the lack of clear agent identity—the ability to create Sybil attacks,
i.e., the ability of each participant to act using multiple identities. It is well-known that Sybil attacks
are a major obstacle for welfare-maximization. Our main result proves that when DSL attackers
face uncertainty over the auction’s bids, the celebrated VCG mechanism is welfare-maximizing even
under Sybil attacks. Altogether, our work shows a successful fundamental synergy between robust-
ness under uncertainty, economic design, and agents’ strategic manipulations in online multi-agent
systems.

1 Introduction

Consider an agent who needs to decide on her action in an environment consisting of other agents.
In certain cases there is a uniquely defined optimal action for the agent, but in most cases this “agent
perspective” is an open challenge. Given the above, both AI and economics care about an adequate
modeling of an agent, and its ramifications in a variety of multi agent contexts, for example, on social
welfare.

We consider a notion for agent modeling we term DSL (Distinguishable Safety-Level). The notion
was previously suggested in the context of constraint-satisfaction problems and fuzzy logic, and was
termed “discrimin” [7]. In game theoretic settings, the notion was previously applied [6] as a solution
concept for bargaining in Boolean games [11]. To the best of our knowledge, it was not previously con-
sidered in the context of auctions, voting, and more generally mechanism design, i.e., when considering
the robustness of economic mechanisms’ performance when facing strategic agents.

There are two ways to think of the DSL solution concept, when applied to agent modeling. One is as
a solution concept adapted to capture the behavioral phenomenon of the loss aversion cognitive bias in
agents, particularly when probabilities over nature states are unknown. The other is as a form of robust
strategy choice under uncertainty, that may be required in volatile and unpredictable environments that
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do not admit a stable Bayesian description. We show its usefulness in auctions. In the full version of
this paper, we also study its behavior in other prominent strategic settings, such as voting. In our main
result we consider the celebrated welfare maximizing VCG mechanism in combinatorial auctions setting,
where it is known to fail under false name (aka Sybil) attacks. We show that DSL agents lead to optimal
social welfare.

1.1 Reasoning under Uncertainty

A classic distinction [15] separates reasoning under risk, where the actors are rational and there is a
commonly known distribution about their environment (also known as the stochastic or Bayesian setting),
and reasoning under uncertainty, where the general structure of strategies and outcomes is known, but
there is no probabilistic information about the environment. Moreover, even assumptions regarding
actors’ rationality or behavior characteristics may not be guaranteed . For such cases, a robust or worst-
case approach seems appropriate, and various notions exist to capture it. Ideally, a dominant strategy
solution exists, but this is usually not the case (and indeed it is not the case in all the cases we analyze
in this paper). A minimal robust notion is that of a safety level strategy, which uses a max-min approach
over all possible outcomes given a strategy choice. However, though it yields interesting results in some
cases [2, 20], in many other cases it does not tell us much about what strategy to choose, in particular in
auctions settings, where we derive our most interesting results. As we see, this is because in auctions the
natural safety level is 0 (which happens when the bidder loses the auction), and any strategy that does
not overbid guarantees it. It is thus hard to choose among these strategies without considering a more
refined notion. Existing refined notions are the lexicographic max-min (originally defined in [19]) and
min-max regret [18]. We overview their comparison to the notion of DSL in Section 3 and Appendix A,
respectively.

1.2 VCG, Sybil Attacks, and Welfare

VCG is a well known mechanism which can be applied for combinatorial auctions. VCG has good
qualities such as being dominant strategy incentive compatible and achieving optimal social welfare.
However, under the possibility of false-name attacks [22], it is no longer truthful. Coming up with other
mechanisms does not solve the basic conundrum: In the full information settings, any false-name proof
mechanism performs poorly in terms of welfare [12].

A possible avenue to solving the issue is by limiting the discussed valuation classes. However, an
example in [13] shows that even when all bidders have sub-modular valuations, VCG is no longer dom-
inant strategy incentive-compatible under false-name attacks. Notably though, even with this example,
VCG still arrives at the socially optimal allocation, and in fact as [1] show, this observation is true in
general up to a constant with sub-modular (and near sub-modular) bidders. However, in the full version
of our paper, we show an example where for the XOS valuation class, which extends the sub-modular
class, there is such an attack so that VCG arrives at an arbitrarily sub-optimal allocation. The attack we
describe is enabled by the full information settings. Without full information, the attack is risky for the
attacker, since it could lead to negative utility, as the attacker overbids her true valuation.

A useful approach, that can lead to better welfare guarantees than dominant strategy mechanism
design, is Bayesian mechanism design. Assuming that the bidder distributions are common knowledge,
recent work has shown that selling each item separately leads to good constant approximation welfare
guarantees for XOS [4] and sub-additive [8] valuations. Though the works do not explicitly consider
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Figure 1: Hierarchy for robust decision under uncertainty

false-name attacks, their constructions use the false-name-proof first and second price auctions to auction
items separately, and so their results naturally extend to Bayesian false-name mechanism design.

It is important to note, that many of the above positive results for welfare guarantees under false-name
attack assume some form of risk-aversion; most importantly, that bidders do not overbid, i.e., they choose
only strategies that are individually rational (under any possible nature state). This condition is equivalent
to limiting the strategy space only to safety level strategies (as in this case of combinatorial auctions, the
safety level is 0). In [10] the authors do not make this assumption, but their positive welfare optimality
results are limited as they only consider the homogeneous single-minded case with two items. We thus
believe that it is natural to ask: Under our definition of DSL, which is a strong risk-aversion notion
(compared, e.g., to the safety level strategy), what welfare guarantees can be obtained? Surprisingly, the
answer is optimal, as we show in our main result in Theorem 4.2.

1.3 Our Results

In Section 2 we formally define our solution concept, and apply it to the first-price and discrete first-price
auctions. In Section 3 (with the additional discussion of min-max regret in Appendix A) we describe a
hierarchy of solution concepts and their relations to the solution concept we introduce (DSL), as sum-
marized in Figure 1.

In Section 4, we present our main result. We discuss VCG as a combinatorial auction under false-
name attacks, when bidders may create shill identities to send bids. It is known that VCG is not dominant
strategy truthful in these settings, and previous results were limited in establishing good welfare guaran-
tees for combinatorial auctions generally under false-name attacks. We show that when bidders use DSL
strategies, VCG achieves optimal welfare even under the threat of false-name attacks.

2 DSL: Definition

When defining DSL strategies, we take the perspective of a single agent i facing uncertainty. The agent
has a utility function ui that determines her utility given the state of the world, which is comprised of
her own action ai, others’ actions a−i, and agent i’s type θi. Formally, ui(ai,a−i|θi). We denote by Ai

the set of all agent i’s pure actions, and by ∆(Ai) the set of all agent i’s mixed actions. An action ai

may be from either of these action sets depending on the context. For mixed strategies, ui(ai,a−i|θi) =
Ea∼ai [ui(a,a−i|θi)]. We denote by Θi the set of all agent i’s types.

Definition 2.1. We say that an action ai of agent i is DSL (given a type θi) if for any other action a′i, over
the set of outcomes where agent i’s utility differs between the actions, the minimal utility attained using
ai is at least as good as that attained by a′i. Formally, let

Dθi(ai,a′i) = {a−i s.t. ui(ai,a−i|θi) ̸= ui(a′i,a−i|θi)}.
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Then, an action ai is pure/mixed DSL if ∀a′i ∈ Ai,1

min
a−i∈Dθi (ai,a′i)

ui(ai,a−i|θi)≥ min
a−i∈Dθi (ai,a′i)

ui(a′i,a−i|θi).
2

We say that a strategy si : Θi → Ai is pure DSL if it maps any type θi to a corresponding DSL pure
action ai. We say that si : Θi → ∆(Ai) is mixed DSL if it maps any type θi to a corresponding DSL mixed
action ai.

Notice that in our definition we compare pure strategies only with other pure strategies, i.e., they are
DSL with respect to this strategy set. Mixed strategies are DSL w.r.t. all strategies (mixed and pure).
We use the term “nature state” to mean the actions a−i, which may result from either uncertainty over
others’ types or over their strategic choice: What matters to the agent in the end is what are all of their
possible actions. There is seemingly some loss of generality in that we assume that all possible a−i are
fixed vectors of actions, and not more generally random variables over actions. But, as we show in the
full version of our paper, allowing for the latter loses the usefulness of the DSL notion.

3 Relations to Prominent Game-theoretic Solution Concepts

Note: Missing proofs in this section appear in the full version of our paper. For completeness, we state
the connection of DSL to safety level and what we call Multi-Leximin strategies, although these claims
are already established in the literature characterizing the notion of discrimin (see, e.g., [7]).

3.1 Dominant Strategy

Definition 3.1. A weakly dominant action ai satisfies that for any other action a′i:
(1) For any nature state a−i,

ui(ai,a−i|θi)≥ ui(a′i,a−i|θi),

and (2) there is such nature state a−i so that the above inequality is strict.
A weakly dominant strategy is such that maps types to weakly dominant actions.

The following result is natural:

Lemma 3.2. Every weakly dominant strategy is DSL.

3.2 Safety Level Strategy and Individual Rationality

Safety level strategies in non-cooperative games are such strategies that yield a best possible guarantee of
utility for a player, without the need to reason about the types or strategies chosen by other players. The
example of [2] makes a compelling argument for choosing such strategies: There are games where the
Nash Equilibrium does not guarantee more than the safety level. In such cases, choosing the equilibrium
strategy runs the unnecessary risk of a lower outcome. [21] extends this insight and shows a class
of games where the safety level strategy guarantees a large constant fraction of the Nash equilibrium
outcome, without its involved risks.

1Or, in the mixed case: ∀a′i ∈ ∆(Ai)
2We use the term minimum loosely: When taken over infinite sets that do not have a minimum the definition uses the

infimum.
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Individual rationality is a common requirement in game theory analysis (see, e.g., [17]), that requires
either that an agent does not participate in a game where it gains negative utility, or that it does not choose
a strategy that may yield negative outcomes. We define:

Definition 3.3. A safety level strategy si [2] is a strategy (mixed or pure) of player i such that for
any type θi it chooses an action ai so that for any nature state a−i of the other agents, ui(ai,a−i|θi) ≥
maxa mina−i ui(a,a−i|θi). I.e., the strategy guarantees the safety level L

de f
= maxa′ mina′−i

ui(a′,a′−i|θi).
Individual Rationality of a strategy si of player i satisfies that for any type θi it chooses an action

ai so that for any nature state a−i of the other agents, ui(ai,a−i|θi) ≥ 0. I.e., the strategy guarantees a
non-negative utility for the player.

The two notions are quite similar, as individual rationality can be seen as a minimal safety level
requirement; in auctions they are in fact equivalent to a third notion of no over-bidding, under some
reasonable conditions (the auction does not charge payments from non-winners, and never charges a
winner more than her declared value). We claim:

Proposition 3.4. A DSL strategy is a safety level strategy, but not necessarily vice-versa.

Corollary 3.5. When there is a finite amount of safety level strategies, and a finite amount of nature
states, a DSL strategy is guaranteed to exist.

The corollary is a result of Lemma 3.8 and Lemma 3.9. We prove both during our discussion of the
lexicographic max-min in the next subsection.

3.3 Lexicographic Max-min

A very interesting comparison is with another robust solution notion, the lexicographic max-min (also
commonly known as leximin). The leximin is especially prevalent in the fair allocation literature, see,
e.g., [16]. We consider two possible ways to define it:

Definition 3.6. Leximin - Let Uai be the set of all possible utility outcomes of the action ai by agent
i, ordered from small to large, and let Uai [ j] be the j element of Uai in this ordering. An action ai

lexicographically weakly dominates (LD) another action a′i if minUai > minUa′i , or minUai = minUa′i
and Uai \minUai LDs Ua′i \minUa′i (a recursive definition). We call an action that LDs all other actions
a leximin. A strategy is leximin if it maps all types to leximin actions.

Multi-Leximin - Let Uai be the multiset of all possible utility outcomes of the action ai by agent
i, ordered from small to large. The rest of the definition follows similarly, where importantly in the
recursive definition we remove only one copy of the minimum element at each step.

Note that the (Multi-)leximin notions are only clearly defined when there is a finite amount of nature
states a−i, otherwise the recursive definition of LD may not terminate.

We first note that both definitions give stronger notions than safety level strategies.

Lemma 3.7. (Multi-)leximin is a safety level strategy, but not necessarily vice-versa.

Despite some similarity in the definition with DSL, the notion of leximin does not have a special
relationship with it: neither implies the other. We demonstrate it using the discrete first-price auction in
Example B.7 Appendix B.

The notion of multi-leximin is much more closely related to the DSL notion. In fact, it is a stronger
notion:

Lemma 3.8. Multi-leximin is a DSL strategy, but not necessarily vice-versa.
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Lemma 3.9. When there is a finite amount of safety level strategies, multi-leximin is guaranteed to exist.

An important advantage of the DSL definition is that it naturally extends to settings with continuous
outcomes. It is not clear how to extend the leximin definition to such cases. Thus, one possible way of
thinking about the DSL notion is that it is a somewhat weaker notion of multi-leximin, that can be used
in continuous settings, as well as discrete ones.

4 Main Result: Application to VCG under False-name Attacks

We now move on to present our main result and through it the usefulness of the DSL notion. False-name
attacks by an agent i in a combinatorial auction are where instead of sending one combinatorial bid, the
agent sends multiple combinatorial bids (a vector bi rather than a single bid bi). The agent then gets all
the items allocated to the “agents” (which we call Sybil agents or Sybil bids) 1 ≤ j ≤ |bi|, and pays the
sum of all their payments. Before formally introducing the VCG notations, we note three complexities
that are present in our notations: (1) We consider both the notion of DSL strategies (which has the single
agent perspective vs. nature states) and social welfare (which accounts for n different agents). (2) We
consider welfare for the real n underlying agents of the auction, but since each may use Sybil identities,
the VCG allocations are in terms of the Sybil identities. We allow for both by using sub-indexing. (3)
Similar to the case of the first-price auction, discretization of the bid space is essential to the result (a
counter-example for continuous VCG appears in the full version of our paper. To further simplify the
proof, we also assume that the valuation space is discrete, though this assumption can be removed. We
allow more granularity to the bid space: valuations are on an ε grid, while bids are on an ε

2|M|! grid.

Definition 4.1. Grid(ε) = {εk}k∈N = {0,ε,2ε, . . .}. A combinatorial bid b ∈ B over an item set M is
a function b : P(M)→ Grid( ε

2|M|!) from the power set of all subsets of M to a non-negative bid value. A
combinatorial valuation v is similarly v : P(M)→ Grid(ε). With the possibility of Sybil attacks, an agent
i with valuation (type) vi sends a vector of bids (action) bi ∈ B∗ (i.e., any amount of combinatorial bids),
and faces a nature state b−i ∈ B∗.

Let ηi = |bi|,η−i = |b−i| be the number of (Sybil) agents in each vector. An allocation αS(bi,b−i)
maps the bid vectors into a partition of S into subsets. We allow indexing α1, . . . ,αn to mean the union of
items allocated to the Sybil identities of each real agent, as well as sub-indexing αi1 , . . . ,αiηi

to mean the
items allocated to a specific Sybil identity of agent i. We denote SW Obs

α = ∑
n
i=1 ∑

ηi
j=1 bi j(αi j),SW Real

α =

∑
n
i=1 vi(αi) for the observed social welfare of an allocation as specified in the (possibly Sybil) bids, and

the real social welfare of the agents, respectively. We denote truthi = vi for the truthful bid.
The VCG combinatorial auction is the pair of allocation rule αM(bi,b−i)= argmaxãM(bi,b−i)

(SW Obs
ãM(bi,b−i)

),
and the payment rule

pM
i j
(bi,b−i) = SW Obs

αM (bi,b−i)−SW Obs

α
M\aM

i j
(bi,b−i).

Finally, the utility of agent i is ui(bi,b−i|vi) = vi

( ⋃
1≤ j≤ηi

aM
i j
(bi,b−i)

)
−

ηi

∑
j=1

pM
i j
(bi,b−i).

Theorem 4.2. When all bidders play DSL strategies, discrete VCG achieves optimal welfare, even under
the possibility of false-name attacks and with general valuations.

Proof. Our proof follows the following structure: First, we define overbidding Sybil attacks and show
that they are not DSL. We then define underbidding attacks and show that they are not DSL. For any
of the remaining attacks, which we call exact-bidding (bidding truthfully is also exact-bidding, but not
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exclusively so), we show that even though they are not necessarily truthful, they yield maximal welfare.
However, this still does not guarantee that one of the remaining strategies is in fact DSL. For this purpose,
we show that there exists a DSL strategy: being truthful3.

First, we show that if the Sybil bids are overbidding v (in a sense that will be immediately defined),
then, similarly to our proof for the first-price auction (see Appendix B), it is not safety level and thus
not DSL. This requires slightly more care since the bids are combinatorial and there are several Sybil
bids. We say that bi = (bi1 , . . . ,biηi

) is overbidding if there is a set S and an allocation αS(bi) so that
∑

ηi
j=1 bi j(α

S
i j
(bi))> vi(S).

Claim 4.3. Overbidding =⇒ not DSL.

Proof. Let us choose a maximizing allocation αS(bi) for S.
We denote b̄ = max1≤ j≤ηi maxS′⊆M bi j(S

′)+vi(S′) for a number high enough that if some other agent
bids it for any subset of M, both the truthful bid vi or the Sybil attack bi will lose that subset. We
will use it in our construction of nature states. By the overbidding condition, we can take the average
b̃ = vi(S)

2 + 1
2 ∑

ηi
j=1 bi j(a

S
i j
), so that ∑

ηi
j=1 bi j(α

S
i j
)> b̃ > vi(S). Consider a nature state where the false-name

attacker faces exactly one additive bidder b′ that has for any good g ∈ M \S, b′(g) = b̄, and for any good
g ∈ S, b′(g) = b̃

|S| . The optimal observed welfare allocation is to allocate all goods in M \ S to b′, and
allocate the set S as in αi(S). The payment of bidder bi must be at least b′(S) = b̃ > vi(S). Therefore, the
attacker has negative utility in this case, while truthfulness is individually rational: i.e., it is not a safety
level strategy and so also not DSL.

We say that bi1 ,biηi
are underbidding if there is a set S so that for any allocation αS de f

= αS(bi) so that
∑

ηi
j=1 bi j(α

S
i j
)< vi(S).

Claim 4.4. Underbidding =⇒ not DSL.

Proof. Let b̃ = 1
2 ∑

ηi
j=1 bi j(α

S
i j
)+ vi(S)

2 , then

ηi

∑
j=1

bi j(α
S
i j
(bi))< b̃ < vi(S).

Let b′ be constructed as in the overbidding case. The allocation αM(bi,b′) allocates no items to the
Sybil bidders of agent i. However, the allocation given agent i bids truthfully αM(truthi,b′), allocates
the set S to her with payment b̃, which yields agent i a positive utility vi(S)− b̃. This yields

min
b−i∈Dvi (bi,truthi)

ui(bi,b−i|vi) = 0.

On the other hand, we claim that since we know DSL strategies are not overbidding, there are no nature
states for which an underbidding Sybil attack gets positive utility while bidding truthfully gets 0 utility.
Assume towards contradiction truthi gets 0 utility. It then either does not win any item, or wins some set

3Another, albeit non-constructive method to show there exists a DSL strategy is by showing the finiteness of undominated
exact-bidding Sybil attacks, and then use Corollary 3.5
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S and pays vi(S) for it. Let S be the set that the Sybil bidders win to gain positive utility. As there is no
overbidding, this set can be won by truthi as well (in the respective maximizing allocation)4. Then,

SW Obs
αM\S(bi,b−i) (No overbidding)

= SW Obs
αM\S(truthi,b−i) (i wins only S)

= SW Obs
αM\S(b−i) (i’s truthful payment)

= SW Obs
αM (b−i)− vi(S) (More bids)

≤ SW Obs
αM (bi,b−i)− vi(S)

So
vi(S)≤ SW Obs

αM(bi,b−i)
−SW Obs

αM\S(bi,b−i)
(1)

Since our choice of S assumes the Sybil bids win exactly it, we have

SW Obs
αM\S(bi,b−i)

+SW Obs
αS(bi)

= SW Obs
αM(bi,b−i)

,

and so, together with Eq. 1,

vi(S)≤ SW Obs
αM(bi,b−i)

−SW Obs
αM\S(bi,b−i)

= SW Obs
αS(bi)

.

Since there is no overbidding, SW Obs
αS(bi)

= vi(S).
We now show that any Sybil bidder j pays vi(S)−∑1≤t ̸= j≤ηi bi j(αi j). Since S is allocated to the Sybil

bidders and M \S to others,

SW Obs

α
M\aM

i j
(bi,b−i) =

SW Obs
αM\S(bi,b−i)+SW Obs

α
S\aM

i j
(bi,b−i)

(2)

Then,

pM
i j
= SW Obs

αM (bi,b−i)−SW Obs

α
M\aM

i j
(bi,b−i)

= SW Obs
αM (bi,b−i)−SW Obs

αM\S(bi,b−i)

−SW Obs

α
S\aM

i j
(bi,b−i)

= vi(S)−SW Obs

α
S\aM

i j
(bi,b−i)

= vi(S)−
ηi

∑
j=1

bi j(αi j)

The total payment of agent i is then
ηi

∑
j=1

pM
i j
=

ηi

∑
j=1

vi(S)− ∑
1≤t ̸= j≤ηi

bi j(αi j) =

ηi · vi(S)− (ηi −1)
ηi

∑
j=1

bi j(αi j) = vi(S).

4In full generality, truthi may win a set s that has partial intersection with S. The analysis of this case is essentially the
same, and stems from the fact that the alternative value for the items forces zero utility on the truthful agent.
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This concludes that whenever the utility of truthi is 0, then the utility for the Sybil attack is 0 as well.
In any other case, the utility of truthi must be strictly positive, and since the bids are discrete the

minimum over all these cases satisfies

min
b−i∈Dvi (bi,truthi)

ui(truthi,b−i|vi)≥
1

2|M|!
.

Therefore, underbidding is not DSL.

We consider exact-bidding such Sybil bids that have for any set of items S, maxαS(bi) ∑
ηi
j=1 bi j(αi j(S))=

vi(S). These are exactly all the Sybil attacks that are neither overbidding nor underbidding. truthi is also
exact-bidding.

Claim 4.5. Exact-bidding =⇒ optimal welfare.

Proof. Consider an allocation αF
de f
= αM(bi,b−i) attained when all players choose an exact-bidding

attack, vs αT
de f
= αM(truthi, truth−i). We have

SW Real
αT

≤ (Truthful)

SW Obs
αT

≤ (No underbidding)

SW Obs
αF

≤ (No overbidding)

SW Real
αF

In words, since there is no underbidding in the Sybil attack, if we take the set allocated to each agent
i under the allocation that maximizes welfare under truthfulness, there are Sybil bidders i j1 , . . . , i jk with
the same aggregate valuation for it. So, SW Obs

αF
is lower bounded by the optimal truthful welfare. Since

there is also no overbidding, whatever allocation is chosen as αObs
F is at least as good to each agent i as

is declared.

Claim 4.6. truthi is DSL.

Proof. Consider some exact-bidding Sybil attack bi.
Case 1: There is a set S so that ∀1≤ j ≤ ηi,bi j(S)< vi(S). Then, by the exact-bidding condition there

must be some allocation αS(bi) (with at least two non-empty allocations αS
i j

) so that maxηi
j=1 bi j(α

S
i j
) <

∑
ηi
j=1 bi j(α

S
i j
) = vi(S). Consider the nature state where there is one bid b′ so that b′(αS

i j
) = vi(α

S
i j
) for

any 1 ≤ j ≤ ηi, and the rest of the sets are defined upward-monotonely: They inherit the largest value
of a subset. With this nature state, the Sybil attack has utility 0. On the other hand, truthi has positive
utility of vi(S)−maxηi

j=1 vi(αi j)> 0. Since truthi is individually rational, it is thus DSL w.r.t. such Sybil
attacks.

Case 2: For every set S, there is such j′ with bi j′ (S) = vi(S). It must hold by the exact-bidding
condition that for any allocation αS(bi), ∑

ηi
j=1 bi j(α

S
i j
) ≤ vi(S) = bi j′ (S). We may assume that VCG

prefers to assign larger bundles when tie-breaking between possible assignments. Then, it must be that
any allocation to the Sybil bidders is given to one Sybil bidder as a whole bundle. It is then weakly better
to send only bi j′ as a single bid instead of bi. Furthermore, it is then weakly better to send truthi, since
truthfulness is dominant for single bid VCG. Since this is true given any nature state, the Sybil attack is
weakly dominated by truthi, which implies truthi is DSL with respect to it.

This covers all the exact-bidding Sybil attacks. DSL strategies with respect to overbidding and
underbidding attacks are implied by the relevant discussion. Overall this covers all Sybil attacks.
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5 Discussion and Future Directions

In the example of the discrete first-price auction in Section 2, as well as in our main result in Section 4, the
DSL solution concept leads to optimal results: truthfulness (or near truthfulness), and optimal revenue or
welfare. In Appendix B we study the first-price auction, and show similar results for its discrete variant.
However, for the classic setting of voting, we show in the full version of this paper that this is not the
case, and that solutions may have various surprising forms.

A robust notion missing from our discussion in Section 3 is min-max regret. We show in Appendix A
it does not imply or is implied by our notion of DSL, and give further characteristics of it. It is also
compared with our notion as part of our discussion of the discrete first-price auction in Appendix B.

In our definition of DSL, we consider only pure nature states. We justify this choice in Appendix C
of the full version, by showing that if we consider mixed nature states as well, then the DSL and safety
level notions become one. In Appendix D of the full version, we show a possible refinement of our notion
of DSL, and demonstrate why it may be useful.

A few immediate open questions follow our work:

• We find that DSL is a stronger notion than safety level. In settings previously studied that proved
performance guarantees for safety level strategies, do DSL strategies exist? Can they yield better
performance guarantees?

• In the case of single-item auctions, our analysis of the discrete first price auction implies that
with DSL bidders, it is possible to achieve optimal welfare and revenue. Does this extend to
combinatorial auctions? If so, does it hold even when the discretization must be polynomially
bound?

• In the presence of partial knowledge or the option to elicitate it (similar to the ideas in [14]), what
would the DSL action be? This is relevant, for example, when agents arrive sequentially, and so
the set of feasible nature states diminishes for later agents.
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A Min-max Regret

Another robust solution notion is the min-max regret [18]. The notion has many uses in voting: [9]
showed it can be used to explain why voters choose to participate in elections, and [15] used it to “re-
solve” the Gibbard-Satterthwaite impossibility theorem (see, e.g., [3]), by showing that plurality voting
(for example) is truthful under this notion. [14] showed how when only partial preferences are known,
voting rules can use this notion to decide a winner, and design good elicitation schemes.
Definition A.1. Regret for an action ai and nature state a−i given a type θi is

Reg(ai,a−i|θi) = max
a′i

u(a′i,a−i|θi)−u(ai,a−i|θi).

Max regret for an action ai given a type θi is

Reg(ai,a−i|θi).

A min-max regret action belongs to

argmin
ai

max
a−i,a′i

u(a′i,a−i|θi)−u(ai,a−i|θi).

In words, the regret of an action ai under nature state a−i is the maximal lost utility u(a′i,a−i|θi)−
u(ai,a−i|θi) of choosing ai instead of a′i, over all possible actions a′i (this regret is non-negative, as there
is always the option of choosing ai itself). Max regret is the maximal such regret over all nature states,
and the min-max regret action is the action ai that has minimal max regret.
Proposition A.2. Dominant strategy =⇒ min-max regret

Proof. Consider a dominant strategy s, fix a type θi, and let a = s(θi). For any a′,a−i, we have that
u(a′,a−i)− u(a,a−i) ≤ 0, i.e., the max regret for a is 0, the minimum possible, and so a is a min-max
regret action. Since this holds for all types, s is a min-max regret strategy.

Example A.3. Min-max regret ≠⇒ safety level
Consider two players, with actions a,b, and A,B respectively. Consider u1(a,A) = u1(a,B) =

0,u1(b,A) = −1,u1(b,B) = 100. The max regret of a for player 1 is 100, and the max regret of b is
1, and so b is the min-max regret strategy, while a is the unique safety level strategy.

B DSL Strategies: Application to the First-price Auction

B.1 The First-price Auction

As an illustrative example, we demonstrate the usage of our solution concept using the first price and
discrete first price single item auctions. Interestingly, we show that in the first-price auction, there are
no DSL strategies. However, moving to a discrete setting, we show that in the discrete first-price auction
[5], there is a unique DSL strategy, which achieves maximal welfare and near maximal revenue.

https://doi.org/10.1613/jair.1065
https://doi.org/10.1016/S0899-8256(03)00045-9
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Definition B.1. An agent i has a value (type) vi for an item. The agent’s bid bi (action) and nature states
b−i are from the same bid space. The auctioneer allocates the item to the highest bidder (either the agent
or nature, tie-breaking towards nature) and if the agent wins it receives vi −bi, and otherwise 0.

First-price auction (FPA): bid space is 0 ≤ bi ≤ vi.
Discrete first-price auction (DFPA): bid space is bi ∈ {ε · k|ε · k ≤ vi}k∈N .

Note that we reformulate the auctions to suits our agent perspective formulation. Moreover, we
omit strategies that are not individually rational (in the (discrete) first-price auction, overbidding has
negative utility in some nature states), which is justified by our later discussion in Proposition 3.4. We
also ignore multitude in nature states that does not change the auction outcome. I.e., we only consider
the highest bids by others as the nature state, and not the entire bid vector. For the DFPA, we denote
εnet(vi) = ε ·maxεn≤vi n, i.e., the closest possible bid below the agent’s value of the item.

In the first-price auction, the notion of DSL strategies is not of much help:

Lemma B.2. In the first-price auction, there are no DSL bid strategies.

Proof. First, consider some bid 0 ≤ bi < vi. Compare it with another bid b′i that satisfies bi < b′i < vi.5

Consider a nature state b−i so that bi < b−i < b′i. Then, 0 = ui(bi,b−i|vi) ̸= ui(b′i,b−i|vi) = vi −b′i. Thus,

min
b−i∈Dvi (bi,b′i)

ui(bi,b−i|vi) = 0.

On the other hand, for the bid b′i and for some nature state b−i, ui(b′i,b−i) = 0 if and only if b−i ≥ b′i.
In all such cases, it also holds that ui(bi,b−i|vi) = 0. In all other cases, i.e., when b−i < b′i, the utility of
the bidder satisfies ui(b′i,b−i|vi) = vi −b′i. We conclude that

min
b−i∈Dvi (bi,b′i)

ui(b′i,b−i|vi) = vi −b′i

> min
b−i∈Dvi (bi,b′i)

ui(bi,b−i|vi) = 0,

and the bid strategy bi is not DSL.
If bi = vi, then for any nature state b−i, ui(bi,b−i|vi) = 0. For some 0 ≤ b′i < bi, for any nature state

b−i where its utility is non-zero, we have ui(b′i,b−i|vi) = vi −b′i > 0, and so similarly to before bi = vi is
not DSL.

However, things get more interesting with the DFPA:

Lemma B.3. In the discrete first-price auction:
For types that have εnet(vi) ̸= vi, and types with εnet(vi) = vi = 0, bidding εnet(vi) is the unique DSL

bid.
For types with εnet(vi) = vi ̸= 0, the unique DSL bid is εnet(vi)− ε .

We first give a proof for the pure DSL case.

Proof. The argument why any other bid strategy is not DSL follows a discretized version of the proof
for Lemma B.2.

Case 1: εnet(vi) ̸= vi

5Note that the proof is written for the pure DSL case. However, it immediately generalizes to the mixed case, by adapting
“bi < vi” to “has a positive probability to satisfy bi < vi”, etc.
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Consider some bid with 0 ≤ b′i < εnet(vi). By the same argument as in the first part of the proof
of Lemma B.2, bidding εnet(vi) is DSL w.r.t. b′i. Since there are no bids with εnet(vi) < b′i ≤ vi by the
definition of εnet , we conclude that εnet(vi) is DSL w.r.t. all other bids, i.e., DSL.

Case 2: εnet(vi) = vi = 0
The unique safety level bid is to bid 0, and so by Proposition 3.4 it is also the unique DSL strategy.
Case 3: εnet(vi) = vi ̸= 0
Similar to the first case, with the difference that bidding vi always leads to utility 0, and so the DSL

bid bracket is vi − ε .

The following lemma completes the mixed DSL case:

Lemma B.4. In the discrete first-price auction with mixed strategies, following the unique DSL pure
strategy is the unique DSL strategy.

Proof. We show the proof for case 1 where εnet(vi) ̸= vi. The other cases are done similarly.
Let si be the stated strategy, vi the valuation (type) and the bid b = si(θi). Let b′ be some other

bid: since b ̸= b′, the bracket εnet(vi) has probability p < 1 of being the actualized bid. Consider the
case b−i where another bidder bids εnet(v)− ε , and ties are broken in favor of the other bidder. Then,
ui(b′,b−i|vi) = Eb̃′∼b′ [ui(b̃′,b−i|vi)] = p · (vi − εnet(vi)) + (1 − p)1[b̃′ > εnet(vi)] · (vi − b̃′) = p · (vi −
εnet(vi)) + (1− p)1[b̃′ > vi](vi − b̃′) < p · (vi − εnet(vi)) < vi − εnet(vi). In any nature state and actu-
alized outcome over the mixed bid b′, if b does not win the item, then b′ does not win the item, or,
alternatively, it wins it and receives negative utility. So, minb−i∈Dvi (b,b

′) ui(b,b−i|vi) ≥ vi − εnet(vi) >

minb−i∈Dvi (b,b
′) u(b′,b−i|vi), and so by the DSL condition b′ is not DSL (and b is DSL w.r.t. b′).

The simple intuition as to why the discrete first-price auction “works” (to guarantee a DSL strategy)
and the first-price auction does not, is that in the first-price auction there is always a “safer” bid that would
guarantee winning the item in more nature states. In the discrete first-price auction, due to bracketing, the
highest bracket that can have positive utility is that DSL bid. Note that this is “almost” truthful: When
εnet(vi) ̸= vi, it is the closest bracket to vi, and it is less than ε away from it. When εnet(vi) = vi (which
should be seen as a rare case, where the value precisely matches the epsilon net), it is not the truthful
bracket, but it is ε close to it. It is also very close to optimal revenue for the auctioneer: If n individually
rational agents participate, the most the auctioneer can get is max1≤i≤n vi. If they play DSL strategies,
she will get at least max1≤i≤n vi − ε .

We note that for the discrete first-price auction, DSL identifies with multi-leximin.

Corollary B.5. The unique DSL strategy of the discrete first-price auction is also the unique multi-
leximin strategy.

Proof. For an agent i with value vi there is a finite amount of safety level strategies, namely all the
strategies with bi ≤ vi, the amount of which is at most ⌈ vi

ε
⌉+1. By Lemma 3.9, there must exist a multi-

leximin strategy. By Lemma 3.8 it is also DSL. Since there is a unique DSL strategy by Lemma B.3, it
must also be the unique multi-leximin.

On the other hand, we now see that min-max regret yields a different solution to the discrete first-
price auction than DSL, i.e., the two notions do not imply each other. [20] previously applied min-max
regret in auction settings, and in particular discussed the DFPA in their Claim 3.1, which we restate
adapted to our notations:
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Claim B.6. In the discrete first-price auction, the min-max regret strategy is to bid εnet(
vi
2 ).

Proof. For any bid bi, the maximum regret is either bi itself (in the case when no other bidders show up
and it was possible to bid and pay 0), or vi − (bi + ε) (in the case when another bidder bids bi and the
item goes to her.6 We are thus looking for argminbi

max{bi,vi −bi − ε}, among the εnet feasible bids.
For b′i < εnet(

vi
2 ), the regret is thus at least

Reg(b′i)≥ vi −bi − ε

≥ vi − (εnet(
vi

2
)− ε)− ε = vi − εnet(

vi

2
)

≥ max{vi − εnet(
vi

2
)− ε,

vi

2
}

≥ max{vi − εnet(
vi

2
)− ε,εnet(

vi

2
)}= Reg(bi).

For b′i > εnet(
vi
2 ), the regret is at least

Reg(b′i)≥ b′i ≥ εnet(
vi

2
)+ ε

≥ max{εnet(
vi

2
),

vi

2
}

≥ max{εnet(
vi

2
),vi − εnet(

vi

2
)− ε}= Reg(bi).

We conclude that εnet(
vi
2 ) is the min-max regret bid strategy.

Finally, we use the discrete first-price auction to demonstrate the difference between leximin and
DSL strategies.

Example B.7. We demonstrate that leximin is different from DSL using the discrete first-price auction.
Bidding 0 is the leximin action, as its set of outcomes is simply the set of two items U0 = {0,vi}: This is
the leximin since any other bid bi > 0 has Ubi = {0,vi −bi}.

6This is true under worst-case arbitrary tie-breaking. If tie-breaking is uniformly random between bidders of the same
bracket, this is still true as the limiting regret when there are n → ∞ bidders in the same bracket
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