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ABSTRACT
In retrieval settings such as the Web, many document authors
are ranking incentivized: they opt to have their documents highly
ranked for queries of interest. Consequently, they often respond to
rankings by modifying their documents. These modifications can
hurt retrieval effectiveness even if the resultant documents are of
high quality. We present novel content-based relevance estimates
which are “ranking-incentives aware”; that is, the underlying as-
sumption is that content can be the result of ranking incentives
rather than of pure authorship considerations. The suggested es-
timates are based on inducing information from past dynamics of
the document corpus. Empirical evaluation attests to the clear mer-
its of our most effective methods. For example, they substantially
outperform state-of-the-art approaches that were not designed to
address ranking-incentivized document manipulations.
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1 INTRODUCTION
Many authors of Web documents are incentivized to have their
documents highly ranked for queries of interest [3]. Top-ranked
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documents attract most user attention and engagement [19] which
is important, for example, for queries with commercial intent.

As a result of their ranking incentives, authors may respond to
rankings induced by the search engine by modifying their docu-
ments; the goal is to promote the documents in future rankings.
Thus, there are queries for which there is essentially a ranking com-
petition [24, 49]. Accordingly, such search settings were recently
termed: “competitive search settings” [24], with the Web being a
canonical example. Herein, we refer to a search setting with rank-
ing incentivized document manipulations as a “competitive search
setting”. A search setting where authors have no clear ranking in-
centives (e.g., a library of books) is termed a “non-competitive search
setting”.

Ranking incentivizedmodifications are often referred to as search
engine optimization (SEO) [13, 28]. Our focus in this paper, as in
some recent line of work [9–11, 40, 46, 48, 51, 53], is on content
modifications which are the result of ranking incentives. A well
known content modification approach intended to promote docu-
ments in rankings is keyword stuffing [13]: adding the terms of a
query for which rank promotion is desired to the document. Other
examples of manipulation strategies are the increased or reduced
use of stopwords [40] and the substitution of terms with their syn-
onyms [46, 48, 51, 53]. Manipulation can be well beyond addition
or substitution of several terms. As a case in point, the topical focus
of a document can change to potentially attain improved ranking
[11, 40]. The document length can also significantly change [11].

Ranking-incentivized content manipulation strategies as those
just mentioned can hurt retrieval effectiveness for both classical
and neural retrieval methods [40, 54]. For example, in Okapi BM25,
a document retrieval score is easily increased by stuffing query
terms. If the document is not relevant, the score increase does not
necessarily reflect increased level of relevance.

Ranking incentivized document manipulations do not necessar-
ily hurt the document quality (e.g., its textual coherence), and more
specifically, do not necessarily turn it into spam [10, 38, 40]. Hence,
using spam classifiers and more generally document quality esti-
mates, which is standard practice in work on Web retrieval [2],
can fall short in addressing ranking-incentivized content manipu-
lations [40]. Indeed, as Jones et al. [20] noted: “not all content that
complicates ranking is also spam”.

Content manipulation can potentially be addressed by devising
retrieval mechanisms that tackle specific manipulation strategies;
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e.g., substitution of terms with their synonyms [52]. However, as
noted above, there is a wide array of manipulation strategies. Fur-
thermore, it was observed that various strategies are often employed
simultaneously [11, 40].

All these observations led us to pursue the following challenge
in this paper: devising content-based relevance estimates that are
“aware” of ranking incentives and which are not “tailored” to specific
manipulation strategies. Awareness to ranking incentives means
making the assumption that content in documents might be the
result of ranking-incentivized manipulations rather than of pure
authorship considerations.

To address the research challenge, we propose a suite of meth-
ods that utilize information induced from past dynamics — namely,
content changes — of the corpus. For example, significant change
of occurrence of specific terms in a document along time, or con-
tinuous topical shift, can potentially attest to ranking-incentivized
manipulations. We pay particular attention to the following re-
search questions. The first touches on the fundamental difference
between competitive and non-competitive retrieval settings:

RQ1: Can ranking-incentives aware content-based relevance es-
timates outperform existing relevance estimates which were not
devised specifically for competitive retrieval settings with ranking-
incentivized content manipulations?

The second and third research questions touch on the differences,
and potentially complementary nature, of addressing content ma-
nipulations that tend to degrade document quality and manipula-
tions which do not:

RQ2: Is using ranking-incentives aware relevance estimates of
merit with respect to using (query-independent) document quality
estimates (e.g., spam classification)?

RQ3: Is integrating ranking-incentives aware relevance estimates
and document quality estimates of merit?

We explore two major retrieval frameworks for devising content-
based retrieval estimates that are ranking-incentives aware and
which are based on utilizing information induced from past corpus
dynamics. Our first approach operates in the language-modeling
framework to retrieval [5]. We present a novel generative assump-
tion to content creation in documents in competitive retrieval set-
tings. Namely, one of the content generators in a document is
presumed to be driven by ranking incentives. Using the assumption
we derive a novel document language model. We note that recent
work showed that a standard simple language-model-based ap-
proach [35, 56] posts retrieval performance that is better, and yields
rankings that are more robust, than that of neural retrieval meth-
ods in a competitive retrieval setting with ranking-incentivized
manipulations [54]. Our second approach operates in the feature-
based learning-to-rank framework [27] with suggested features that
quantify past temporal changes of existing content-based features.

For empirical evaluation, we used recently published datasets
[10, 40]. These are recordings of iterative content-based relevance
ranking competitions held between ranking-incentivized authors.

The evaluation demonstrates the merits of our most effective meth-
ods. Using our novel language model results in performance that
consistently surpasses that of the standard language model ap-
proach, which as noted above, is highly effective for competitive
retrieval settings [54]. Furthermore, using features that quantify
past changes of document content results in retrieval performance
that transcends the state-of-the-art in content-based relevance esti-
mation using feature-based learning-to-rank [27] (RQ1). In addition,
our learning-to-rank approach outperformsmanual filtering of doc-
uments of low quality (RQ2), and is also effective in addition to
using such filtering (RQ3). These findings provide support to (i) the
potential merit of accounting for ranking incentives in devising
relevance estimates for competitive retrieval settings, and to the
(ii) difference between, and complementary nature of, our ranking-
incentives aware relevance estimates and query-independent docu-
ment quality estimates that are mainly used to penalize low quality
documents.

Our contributions can be summarized as follows:

• The first work, to the best of our knowledge, on content-
based relevance estimates that address ranking-incentivized
content manipulations in competitive retrieval settings from
a “macro-level” perspective; that is, without being tailored
to a specific type of content manipulation strategy.
• Our novel relevance estimates are shown to outperform state-
of-the-art estimates which were not designed to address
ranking-incentivized content manipulation.
• We demonstrate the performance superiority of using our
ranking-incentives aware relevance estimates to document
quality measures and the merits in integrating them.

2 RELATEDWORK
The focus of earlier work on adversarial information retrieval [3]
has been on detecting different types of spam andmaking hyperlink-
based models more robust to adversarial effects [3, 14, 32].

Various aspects of temporal retrieval were studied [21]; e.g., tem-
poral indexing techniques, retrieval models for temporal queries,
or having time as an additional “relevance dimension”. In contrast,
we leverage past temporal corpus dynamics for content-based rele-
vance estimation in competitive retrieval settings.

There is a huge body of work on analyzing and predicting tem-
poral changes of Web documents regardless of ranking effects;
e.g., [36, 37, 44]. Our approaches utilize information induced from
temporal changes to devise relevance estimates.

Raifer et al. [40] studied the document modification strategies
of authors in ranking games. We use the dataset of the controlled
ranking competitions they organized. However, no retrieval method
was proposed in their work.

A game theoretic analysis was used to show that the probability
ranking principle (PRP) [42] is sub-optimal in competitive retrieval
settings. A theoretically improved stochastic ranking paradigm was
proposed but it relies on true relevance judgments. In contrast, we
devise relevance estimates that do not use relevance judgments.

There is a line of work on using past snapshots of a document —
mainly, term and document frequencies — to enrich its representa-
tion [1, 7, 8, 33]. Competitive retrieval settings were not considered
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and therefore the effect of ranking incentives on document ma-
nipulations was not accounted for. Still, we use a couple of these
approaches [1, 8] as baselines as they utilize information induced
from past snapshots of the corpus. We show that our approaches
substantially outperform these baselines.

Raiber et al. [38] addressed the task of predicting whether a query
would be the target for SEO. In contrast to our work, the document
ranking task was not addressed. Raiber et al. [38] also showed
using human annotations that documents which went through
SEO could be ranked high for TREC’s ClueWeb09 queries even if
various document quality measures [2] were used by the ranking
function. We demonstrate the merits of our ranking-incentives
aware relevance estimates even when applied after documents
marked by humans as of low quality are filtered out.

There is work on filtering from ranked lists documents that
exhibit high surface-level query similarity but for which other
relevance evidence — induced from inter-document similarities — is
not significant [39]. The premise is that these documentsmight have
beenmanipulated by addition of query terms. The filtering approach
was substantially inferior to a standard relevance estimationmethod
that simply used these inter-document similarities [39]. In contrast
to our work, past corpus snapshots were not utilized and a ranking-
incentives aware retrieval model was not proposed.

Recent work demonstrated the connection between the robust-
ness to document modifications of rankings induced by feature-
based learning-to-rank methods in competitive retrieval settings
and the level of regularization applied to these methods [9]. The
relevance effects of modifications were not studied, and improved
relevance estimates for competitive retrieval settings were not pro-
posed. Ranking robustness, which is outside the scope of this paper,
was also empirically studied for neural retrieval methods [54].

There is work on automatically augmenting documents with
phrases [17], replacing their passages [10], or substituting indi-
vidual terms [41, 46, 48, 51, 53] to promote documents in rank-
ings. There is also work on defense mechanisms against term-
substitution attacks on rankers [52]. Our relevance estimates are
not “tailored” to specific manipulation strategies. As noted above,
there are various manipulation strategies which are often employed
simultaneously as is the case in the datasets we use for evaluation.

3 RETRIEVAL FRAMEWORKS
We address the task of ad hoc retrieval over a document corpus
D. We assume that some of the temporal content dynamics in the
corpus is driven by ranking incentivized document authors: they
modify their documents in response to rankings induced for queries
of interest to potentially improve the documents’ future rankings.

Our approach is based on utilizing information induced from
the dynamics of corpus changes to improve the effectiveness of
retrieval over D. Let D−i (i ∈ {1, . . . ,h}) denote the i’th historical
(previous) snapshot ofD; h is the history length; we will sometimes
useD0 to refer toD. If d is a document inD, we use d−i to denote
its i’th past version which is part of D−i ; d ≡ d0.

Throughout this section we assume a fixed query q and some
document relevance ranking methodM. We assume thatM was
used to induce rankings for q over each of D0, . . . ,D−h . A com-
petitive retrieval setting means that document authors might have

responded to the ranking induced over D−i (i ∈ 1, . . . ,h), specif-
ically by modifying their documents with the goal of improving
their future ranking — i.e., that induced over D−i+1.

We set as a goal to devise methods that utilize information in-
duced from past temporal content dynamics of the corpus so as to
address potential effects of ranking-incentivized document modifi-
cations. We pursue our goal in two major retrieval frameworks. The
first, addressed in Section 3.1, is the language modeling framework
to retrieval [5]. The second framework we explore (Section 3.2) is
feature-based learning-to-rank [27].

3.1 The Language Modeling Framework
We now present a retrieval approach in the language modeling
framework that addresses content effects driven by ranking incen-
tives.

Most document ranking methods in the language modeling
framework to retrieval [5, 25] are based on comparing a language
model induced from a document with that induced from the query1.
Unigram document language models [5] — based on a term inde-
pendence assumption — are often estimated using term counts in
the document and in the corpus as we formally describe below. A
generative perspective of mixing these two types of counts is that
document terms are generated by a two component mixture model
[15, 29]. The first component is the ‘”core/pure” authorship model
(e.g., a topical model) and the second is a general (background)
model of language approximated by that induced from the corpus.

In competitive retrieval settings, document content can result
from ranking incentives. Hence, we make the generative assump-
tion that in competitive settings, terms in documents are generated
by a three component mixture model: (i) the “core” model, (ii) a
ranking-incentives aware model, and (iii) the background model.
The ranking-incentives aware model, which could be viewed as an
adversarial model with respect to the ranking function, is query
dependent. That is, content generation is affected by queries for
which the document author has ranking incentives. Hence, our
generative assumption to document creation departs from previous
work on devising document language models for retrieval in two
important respects: it accounts for ranking-incentives effects and
it assumes that document creation might be query dependent. We
now turn to formally present the mixture model where the goal is
to estimate the “core” document model. That is, we aim to rank the
document based on its “real” content and neutralize the effects of
content created for the sake of rank promotion.

3.1.1 Mixture Model. We first describe the notation that will be
used throughout this section. Let

pMLE
x (w )

def
=

tf(w ∈ x )∑
w ′ tf(w ′ ∈ x )

(1)

be the maximum likelihood estimate (MLE) of termw with respect
to text (or text collection) x ; tf(w ∈ x ) is the number of occurrences
ofw in x . We smooth the MLE using Dirichlet priors [56]:

pDirx (w )
def
= (1 − αx )pMLE

x (w ) + αxp
MLE
D

(w ); (2)

1Using an unsmoothed maximum likelihood estimate for the query model, and the
KL divergence to compare document and query language models, results in rank
equivalence to the query likelihood model [47].
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αx
def
=

µ
|x |+µ where |x |

def
=
∑
w ′∈x tf(w ′ ∈ x ) and µ is a free

parameter.
We use the cross entropy to compare two language models θ1

and θ2: CE (θ1 | | θ2)
def
= −

∑
w p (w |θ1) logp (w |θ2).

Let d be a document in D. Recall that q is the given query for
which ranking should be induced. As noted above, for the competi-
tive retrieval setting we assume that the terms in d are generated by
a three component mixture model of unigram language models. The
first component is a latent “core” model, pcored (·), which should be
estimated. The second component is the ranking-incentives aware
model, pr incq (). This query-dependent model assigns high proba-
bility to terms that are presumably likely to be used by authors
competing for high ranking with respect to q. We describe below
a few approaches to estimating pr incq (·). The third component in
the mixture is the background language model induced from the
corpus: pMLE

D
(·).

Accordingly, d’s log generation likelihood can be written as:

L (d ) = logp (d |q,pcored (·))
def
= (3)∑

wi ∈d

log[(1 − λ1 − λ2)pcored (wi ) + λ1p
r inc
q (wi ) + λ2p

MLE
D

(wi )];

wi is the i’th term in d ; λ1 and λ2 are free parameters. We estimate
pcored (·) using the EM algorithm. The EM update steps are (w is a
term in d):

E: f (w ) =
(1 − λ1 − λ2)pcored (w )

(1 − λ1 − λ2)pcored (w ) + λ1pr incq (w ) + λ2pMLE
D

(w )
;

M: pcored (w ) =
tf(w ∈ d ) f (w )∑

w ′ tf(w ′ ∈ d ) f (w ′)
.

We cannot usepcored (·) to directly rankd as it might assign a zero
probability to terms not in d . Hence, we smooth pcored (·) similarly
to the smoothing of maximum likelihood estimates in Equation 2:

pcore ;Dird (w )
def
= (1 − αd )pcored (w ) + αdp

MLE
D

(w ); (4)

setting αd
def
=

µ
|d |+µ , with a free parameter µ, yields a variant of

Dirichlet smoothing2.
We then assign document d a retrieval score for query q:

s (q;d )
def
= −CE (pMLE

q (·) | | pcore ;Dird (·)). (5)

Aranking-incentives awaremodel. To estimate a ranking-incentives
aware model for query q, pr incq (·), we use a document set Dr inc

q
composed of documents that are suspected to manifest ranking-
incentives effects with respect to q; e.g., excessive use of q’s terms.

We then set for each termw :pr incq (w )
def
= pMLE

Dr inc
q

(w ). See Equation

1 for a definition of the MLE.
We consider two sets of documents, Dr inc

q , which might mani-
fest ranking-incentives effects forq. The first is the set of documents
most highly ranked in the past for q. Let dtopq;D−i

denote the docu-
ment most highly ranked for q in D−i : the i’th historical snapshot

of the corpus D. We define the TopRank set: Dr inc
q,TopRank

def
=

2Wewrite “variant” as pcored ( ·) is not an MLE for a multinomial distribution for which
Dirichlet is a conjugate prior.

{d
top
q;D−1

, . . . ,d
top
q;D−k

}; k is a free parameter. The assumption is that
in a competitive retrieval setting, these documents should manifest
to some extent ranking-incentives effects. For example, Raifer et al.
[40] showed empirically that document authors try to promote their
documents by mimicking content of documents that were highly
ranked for the query in the past. Theoretical analysis provided the
motivation for this strategy [40]: highly ranked documents are a
signal about the undisclosed ranking function.

The second set of documents that might manifest ranking incen-
tives effects, referred to as HighImp, is composed of past versions
d−1, . . . ,d−k+1 (k is a free parameter) of a document d for which
the rank improvement of moving from d−k (in the corpus snapshot
D−k ) to d−1 (in the corpus snapshot D−1) was the highest with
respect to all rank improvements for documents between these
two corpus snapshots; if two documents had the same rank im-
provement between D−k and D−1, we use the one whose rank in
the ranking induced over D−1 was higher. Significant rank pro-
motion between rankings induced for a query over the historical
corpus snapshots can potentially be the result of increased attempt
at manipulating the document to this end.

3.2 The Learning-To-Rank Framework
Our proposed mixture model is an example in the language mod-
eling framework of accounting for the potential effects of a com-
petitive retrieval setting where document modifications can be
ranking incentivized. Information induced from historical corpus
snapshots served as the basis to model these potential effects. We
now turn to explore the use of such information to improve an exist-
ing feature-based learning to rank (LTR) approach which operates
in a competitive retrieval setting.

Suppose that the retrieval methodM used to induce the rank-
ings for q over the corpus snapshots D−h , . . . ,D−1,D0 ≡ D is
feature-based [27]; that is, each pair of a query and a document
is represented using a feature vector andM is an LTR approach.
Let F denote the subset of features used byM which are based
on textual content in the document; e.g., Okapi BM25 document-
query similarity, document length, number of query terms which
appear in the document, the entropy of the term distribution in the
document [2], etc. We use f to denote a feature in F and vf (q,d )
to denote its value for a query-document pair (q,d ).

We consider a set of additional features, referred to asAgg, to be
added to the base feature set F . The Agg set is composed of features
that are aggregates of historical values of features in F . Specifically,
for each feature f (∈ F ) and a query-document pair (q,d ), we use
in addition to vf (q,d ) features whose values are the mean (Avg),
maximum (Max), minimum (Min) and standard deviation (Std)
of the feature values: {vf (q,d−i )}hi=1. The resultant features are
denoted f -x where x ∈ {Avg, Max, Min, Std}.

These features help to quantify, for example, temporal skewness.
For query-document similarity features, high skewness towards
the present might attest to increased effort of manipulating the
document for improved future ranking. Hence, the learned ranking
function might assign reduced importance to features with high his-
torical skweness of values.While our approach focuses onmodeling
temporal changes of content-based features, the aggregation-based
features we present are not committed to content.
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Table 1: Datasets used for evaluation.

ASRC Combined

overall # documents 1279 1090
# queries 31 31
# documents per query and round 5-6 7-8
the rounds used for evaluation 2-8 2-5
% of relevant documents 87% 88%
% of documents with relevance grade 1 12% 11.1%
% of documents with relevance grade 2 23.4% 22.6%
% of documents with relevance grade 3 51.7% 54.5%
% of low quality documents 0.9% 1.4%

We found that using estimates of the changes of the similarity
of a document d to its past snapshots, {d−i }hi=1, can help to fur-
ther improve retrieval effectiveness. For example, high variance
of the similarity can potentially attest to excessive changes of the
document which might be driven by ranking incentives. The inter-
document similarity is measured using the cosine between tf.idf
vectors. We use the average, maximum, minimum and standard de-
viation of the similarity of d with its past versions, {d−i }hi=1, as the
features: Sim-Avg, Sim-Max, Sim-Min and Sim-Std. These features
are added to the Agg feature set.

We use LTR to denote theM retrieval method applied with its
original set of features. LTR+Agg refers to using the features in
Agg in addition to the original features.

4 EXPERIMENTAL SETTING
We next describe the datasets used for evaluation. Then, we provide
details about the learning-to-rank approach, the reference com-
parisons used, and additional aspects of the evaluation: evaluation
metrics, cross validation and ranges of free-parameter values.

4.1 Data
Our retrieval methods address the content-based corpus dynam-
ics driven by ranking incentives of authors. Hence, the evaluation
requires data that manifests such ranking-incentivized dynamics.
Furthermore, the data should include historical snapshots of a cor-
pus and rankings induced over these snapshots for various queries.

To the best of our knowledge, there are only two publicly avail-
able datasets thatmeet the requirements just specified. These datasets
are the recordings of content-based ranking competitions organized
by Raifer et al. [40]3 and Goren et al. [10]4. The competitions were
held between students in courses. The students manipulated plain-
text documents of up to 150 terms. The competitions were iterative
and ran for a few rounds. At the beginning of the competitions, for
each query the students were provided with the same example of a
relevant document [10, 40]. In each round the students were shown
a ranking induced over their documents by an undisclosed ranking
function: LambdaMART [55] with content-based features [10, 40].
Then, the students modified their documents to potentially improve
their rankings in the next round. The students were incentivized via
bonuses to course grades to participate in the competitions. Ethics
committees approved these competitions [10].

3https://asrcdataset.github.io/asrc/.
4https://github.com/asrcompetition/content_modification_dataset/tree/master/
ControledExperiment.

Raifer et al.’s [40] competitions were held for 31 queries (topic
titles) from TREC’s ClueWeb09 collection [38]. Each competition
for a query was run for 8 rounds between 5 students except for
one which had 6 students. We use each of the 2–8 rounds as an
evaluation setting: the corpus D (≡ D0) in round i (∈ {2, . . . , 8})
is used for evaluation; its historical snapshots are: D−1, . . . ,D−h
where D−j (j ∈ {1, . . .h}) is the corpus snapshot in round i − j;
h = i − 1. This dataset was termed ASRC.

The competitions of Goren et al. [10] were run for 5 rounds with
30 queries out of the 31 used by Raifer et al. [40]5. Only two students
competed in each competition for a query; the other competing
documents were planted. Since ranking two documents results in a
somewhat unstable evaluation, we combined for each query and
each round in {1, . . . , 5} the documents of Goren et al. [10] with
those of Raifer et al. [40] from the respective round6. The corpora
used for evaluation are for each of the rounds 2–5. The resultant
dataset is denoted Combined.

Each document in the datasets of Raifer et al. [40] and Goren
et al. [10] was judged for binary relevance to the queries by five
annotators. We induced graded relevance judgments as follows: 0
grade (non-relevant document), if less than 3 annotators deemed
the document relevant; otherwise, x − 2 grade (relevant document),
where x (≥ 3) is the number of annotators who deemed the doc-
ument relevant. Each document in the ASRC dataset was labeled
by five annotators as whether it was keyword-stuffed [40]. That
is, whether the document contained an excessive use of specific
terms. Keyword stuffing is a common search engine optimization
technique [13]. If three or more annotators marked it as keyword
stuffed, and its relevance grade was lower than 2, then we consider
it as of low quality. Similarly, three annotators labeled each docu-
ment in Goren et al.’s dataset [10] as of high quality or low quality.
If a document was marked by all three as of low quality, and its
relevance grade was lower than 2, we treat it as of low quality7.

The details of the two datasets are summarized in Table 1. Obvi-
ously, these are not big datasets, but they have already been used
by several research groups for (i) analyzing document modifica-
tion strategies in competitive retrieval settings [40], (ii) exploring
ranking robustness of both classical and neural retrieval methods
in these settings [9, 54], and (iii) evaluation of automatic methods
of content modification for rank promotion [10]. Furthermore, it
was recently reported [50] that document modification patterns
observed in these ranking competitions [40] were also observed
with respect to past versions of ClueWeb09 documents found in the
Internet Archive. We could not use this dataset [50] due to the ex-
treme sparseness of past snapshots of the corpus; many documents
in ClueWeb09 did not have even one past snapshot. Organizing
large-scale ranking competitions that will result in much larger
datasets is a significant challenge left for future work.

Table 1 shows that the percentage of relevant documents is high.
This is because the students opted (although were not explicitly
instructed) to produce relevant documents. Still, there is a solid
5We used the control competitions data only. Other competitions involved automatic
manipulation of documents by bots.
6For the query used in Raifer et al. [40] but not in Goren et al. [10] we used only the
rounds and documents of the former.
7Some of the highly relevant documents in Raifer et al. [40] were marked as keyword
stuffed and some of the highly relevant documents in Goren et al. [10] were marked
as of low quality. Here, we address low quality documents with a low relevance grade.

https://asrcdataset.github.io/asrc/
https://github.com/asrcompetition/content_modification_dataset/tree/master/ControledExperiment
https://github.com/asrcompetition/content_modification_dataset/tree/master/ControledExperiment
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percentage of documents with a relatively low relevance grade (1 or
2), and we use NDCG with these graded judgments for evaluation
as detailed below. Furthermore, a recent study [54] showed that
even when using only binary relevance judgments for the ASRC
dataset, there are considerable performance differences of a wide
array of retrieval methods: classical methods [43, 56], feature-based
learning-to-rank [4, 18, 55], deep matching models [6, 12, 16, 30]
and methods using pre-trained language models [23, 26].

4.2 Learning-To-Rank
We now describe the content-based features, F , used to learn a
ranking functionM. (See Section 3.2.) Except for the BERT feature,
all features were used in the ranking functions in Raifer et al.’s [40]
and Goren et al.’s [10] competitions. All the query-document fea-
tures we use, except for BERT, are representatives from Microsoft’s
learning-to-rank dataset8 that can be applied to the plaintext docu-
ments in our datasets. Other features are effective document quality
measures adopted from work on Web retrieval [2].

Let d and q be a document and a query, respectively, for which
a feature vector is defined. The features are: (i) Okapi: the BM25
score of d for q, (ii) LM: the language-model score of d for q (cf.,
Equation 5): −CE (pMLE

q (·) | | pDird (·)), (iii) TF:
∑
w ∈q tf(w ∈ d ),

(iv) NormTF: 1
|d |
∑
w ∈q tf(w ∈ d ), (v) LEN: |d |, (vi) FracStop: the

fraction of term occurrences ind that are stopwords; this feature and
the next two were shown to be highly effective document relevance
priors [2]; the NLTK stopword list was used (https://www.nltk.
org/nltk_data/), (vii) StopCover: the fraction of stopwords on the
stopword list that appear in d , (viii) ENT: the entropy of d’s term
distribution: −

∑
w pMLE

d (w ) logpMLE
d (w ), (ix) BERT: The score

assigned to d by a (large) BERT model fine tuned for query-based
passage ranking over MS MARCO [31]; note that documents in our
datasets are short (up to 150 terms). Feature values are min-max
normalized. We applied Krovetz stemming and removed stopwords
from queries except for inducing the BERT feature.

We follow Raifer et al. [40] and Goren et al. [10] and use the
state-of-the-art LambdaMART method [55]9 as the learning-to-
rank (LTR) approach. Our ranker consistently outperformed theirs.
(Actual numbers are omitted as they convey no additional insight.)
Their ranker was a LambdaMART method trained with many
content-based features from Microsoft’s learning-to-rank dataset.
The content-based features we use are a subset of theirs except for
BERT. Furthermore, their rankers were trained on ClueWeb09 with
TREC’s topic titles 1–200, while our LambdaMART was trained
with their competitions data [10, 40]10.

4.3 Reference Comparisons
The Okapi, LM and BERT features described above are used as
reference comparison methods. They depend only on the current
snapshot of the document and the corpus.

The following two reference comparisons are adopted fromwork
on utilizing previous snapshots of the corpus and the document to
8www.research.microsoft.com/en-us/projects/mslr
9RankLib implementation: https://sourceforge.net/p/lemur/wiki/RankLib/.
10A recent study [54] showed that RankSVM is slightly more effective than Lamb-
daMART over the ASRC dataset. Still, we used LambdaMART as it was the ranker
in the competitions that resulted in the ASRC dataset [40]: students modified their
documents in response to rankings induced by LambdaMART in these competitions.

improve the document representation [1, 8]. We selected represen-
tative (highly effective) methods that utilize past snapshots since
our approaches also use these snapshots.

The SepLM method [8] induces a separate language model for
three sets of terms. The sets are defined based on how long in the
history a term appears in the document’s historical snapshots. The
language models are mixed and together with a prior are used to
score a document in the languagemodeling framework. ThePastTF
approach [1] adjusts the term frequency (tf) of a term in a document
based on its bursts in historical snapshots of the document11. The
adjusted tf is used in Okapi BM25 or language-model based retrieval
yielding the methods PastTFOkapi and PastTFLM, respectively.

4.4 Evaluation and Training
Since the number of documents ranked for a query per a competi-
tion round is at most 8 (see Table 1), we use NDCG@1, NDCG@3
and NDCG@5 as evaluation measures with the graded relevance
judgments described above. We use leave-one-out cross validation
over query-round pairs to train the LTR models (all based on Lamb-
daMART) and to set free-parameter values of all models. Specifically,
we hold out a test query at round i and use for train and validation
all other queries at round i . As noted above, we report the average
performance over queries and rounds; i.e., over the query-round
pairs when the pair was the one held out for testing. Statistically
significant performance differences with p ≤ 0.05 are determined
using the two tailed randomization test applied over query-round
pairs with 10000 random permutations [45]. Bonferroni correction
was applied for multiple-hypothesis testing.

We train the LTR models as follows. For each held out query
used for test, we repeat the following process 5 times. We randomly
select 3 train queries for validation and all the remaining train
queries (27) are used to train the model. Once the values of hyper
parameters are set using the validation set, we re-train the model
using all train queries including the validation queries. We then
apply the five trained models on the held out (test) query and
attain five performance numbers (for each evaluation measure)
for that query. Their average is the final evaluation score for the
query.We use this repeated procedure of splitting the entire training
data to train and validation due to the low number of queries. For
the unsupervised methods, all train queries were used to set free-
parameter values. NDCG@5 served as the optimization goal when
training LambdaMART and for setting free-parameter values.

4.5 Free-Parameter Values
The Dirichlet smoothing parameter, µ, used in LM and the mixture
model was set to values in {50, 100, 200, 300, 500, 700, 800, 900, 1000,
1200, 1500}. When LM was used as a feature in LambdaMART,
we set µ = 1000 following previous recommendations [56]. The
mixture-model mixing coefficients, λ1 and λ2, were set to values
in {0, 0.1, . . . , 0.9} with the constraint λ1 + λ2 ≤ 1. The k parame-
ter in the ranking-competition aware model (mixture model) was

11Two indications for term bursts are used in [1]: one based on content and the other
based on the number of document changes in a time interval. Since the latter cannot
be used for the ranking competitions data as there are no such intervals, we use only
the content-based burst indication.

https://www.nltk.org/nltk_data/
https://www.nltk.org/nltk_data/
www.research.microsoft.com/en-us/projects/mslr
https://sourceforge.net/p/lemur/wiki/RankLib/
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Table 2: Comparison of the baselinemethods. Boldface: best
result per column. ’l ’ and ’o’: a statistically significant differ-
ence with LM and Okapi, respectively.

ASRC Combined

NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

LM .762 .806 .904 .743 .755 .824
Okapi .766 .809 .906 .743 .753 .825
BERT .664lo .758lo .874lo .685 .717 .791lo

SepLM .706o .769lo .885lo .652lo .710lo .780lo
PastTFOkapi .712lo .776lo .886lo .745 .752 .815
PastTFLM .711o .795 .892 .632lo .691lo .763lo

set to 3 for TopRank and to 4 for HighImp based on some pre-
liminary experiments with values in {1, 2, 3} and {2, 3, 4}, respec-
tively. k1 and b in Okapi, when it was used as a method at its own
right, were set to values in {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}
and {0.3, 0.45, 0.5, 0.55, 0.6, 0.75, 0.9}, respectively; when Okapi was
used as a feature in LambdaMART, we used the default values:
k1 = 1.2 and b = 0.75. The number of trees and the number of
leaves in a tree in LambdaMART were set to values in {250, 500}
and {2, 3, 5}12, respectively. All other parameters of LambdaMART
were set to default values of the implementation (RankLib). The free
parameter values for the SepLM baseline [8] were set as follows:
γ ∈ {0, 0.1, 0.5, 0.9, 1, 1.1, 1.5, 1.6, 1.7, 2.0, 2.3, 2.5}; µS , µM and µL
were set to values in {5, 50, 100, 200, 300, 500, 700, 800, 1000, 1200,
1500}; λS , λM , λL (λS + λM + λL ≤ 1) were set to values in
{0, 0.1, . . . , 1}. The parameters for the PastTF baselines were set as
follows: αburst ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; αдlobal , β ∈ {−2.0,
−1.5,−1.3,−1.2,−1.1,−0.9,−0.5,−0.1, 0.1, 0.5, 0.9, 1, 1.1, 1.2, 1.3,
1.5, 2}; λ1, λ2, λ3 (λ1 + λ2 + λ3 = 1) ∈ {0, 0.1, . . . , 1}; µ = 1000;
Okapi’s b1 = 0.5 and k1 = 1 following [1].

5 EXPERIMENTAL RESULTS
5.1 Comparison of Baselines
We start by contrasting the performance of the various reference
comparison methods we use (i.e., the baselines). Table 2 presents
the performance numbers. We see that LM and Okapi outperform
the other baselines in almost all relevant comparisons (2 datasets
× 3 evaluation measures); most of the performance differences are
statistically significant. Okapi slightly outperforms LM in several
cases but not statistically significantly. We note that in a recent
study [54], 13 methods including LM, Okapi, feature-based learning-
to-rank approaches [4, 18, 55], deep matching models [6, 12, 16,
30] and methods based on pre-trained language models [23, 26]
including the BERT baseline we use here, were compared over the
ASRC dataset. LM andOkapi where two of the three best performing
methods with performance almost identical to that of the best
performing method. Furthermore, the rankings induced by LM and
Okapi were substantially more robust than those induced by the
other 11 methods [54]. Given these findings, and the performance
numbers in Table 2, we use LM and Okapi as the two main reference
comparisons for our methods in what follows.

We also see in Table 2 that BERT is often outperformed by the
other baselines which is in line with previous findings [54]. It was

12Higher number of leaves resulted in overfitting.

Table 3: Mixture model (Mix). ASRC+QualityFilter results
from ASRC by removing low quality documents. Parsi-
monLM is the parsimonious language model [15]. Boldface:
the best result in a column. ’l ’, ’s’ and ’f ’ mark statistically
significant differences with LM, SepLM and PastTFLM, re-
spectively. There are no statistically significant differences
between ParsimonLM and Mix-TopRank, Mix-HighImp.

ASRC ASRC+QualityFilter

NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3

LM .762 .806 .904 .770 .817
SepLM .706 .769l .885l .718 .776l
PastTFLM .711 .795 .892 .719 .801
ParsimonLM .764 .811s .906s .770 .820s
Mix-TopRank .773sf .797 .903 .777 .805
Mix-HighImp .775sf .819l s .910s .781f .829l s

fine tuned on the passage retrieval task in MS MARCO; there is
not enough data in the competition datasets to further fine tune
it. Furthermore, we found that BERT’s performance in the first
two rounds of the competitions was substantially better than its
performance in later rounds. This finding potentially attests to
BERT’s sensitivity to ranking incentivized documentmanipulations;
the more the competitions progressed, the more substantial the
manipulations were [10, 40]. This finding is also aligned with the
relatively low robustness of rankings induced by BERT over the
ASRC dataset as recently reported [54].

As Table 2 shows, the PastTFLM [1] and SepLM [8] methods are
consistently — and often statistically significantly — outperformed
by LM and Okapi. PastTFLM and SepLM fuse information about
past document snapshots at the term and/or language model level.
They were designed to improve the representation of the existing
document snapshot using its past snapshots, but without an explicit
account for potential effects of ranking incentives. We therefore
arrive to the conclusion that utilizing historical snapshots of docu-
ment without accounting for potential ranking incentives can fall
short in competitive retrieval settings.

5.2 The Language Modeling Framework
The evaluation of our proposed mixture model is presented in
Table 3. We report the performance of using the two suggested
ranking-incentives aware models in the mixture model (Section
3.1.1): TopRank (using documents most highly ranked for the query
in the past) and HighImp (using documents whose ranking through-
out the history has improved the most). The LM13, SepLM [8] and
PastTFLM [1] methods serve as baselines. An additional reference
comparison is the parsimonious language model [15], denoted Par-
simonLM. This is a special case of our mixture model when not
using the rank-competition aware generator; i.e., setting λ1 = 0 in
Equation 3. ParsimonLMwas shown to be more effective forWeb re-
trieval than a standard language model [22]. We tune ParsimonLM’s
free parameters as those of LM and the mixture models.

Table 3 shows the performance for ASRC andASRC+QualityFilter.
The latter is the result of removing from the corpus the documents
deemed to be of low quality. (See Section 4 for details.) We do not

13Okapi is not used here as the focus is on language modeling; and, its performance
was shown above to be statistically indistinguishable from that of LM.
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Table 4: The performance of LTR+Agg which adds the
history-based features to LTR. LTR+QualityFilter (top table):
removing from the LTR ranked list low quality documents.
This is equivalent to the LTR method in the bottom table
where low-quality documents were removed from the entire
corpus. Boldface: best result per column per table. ’l ’, ’o’, ’t ’
and ’q’ mark statistically significant differences (per table)
with LM, Okapi, LTR and LTR+QualityFilter, respectively.

ASRC Combined

NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

LM .762 .806 .904 .743 .755 .824
Okapi .766 .809 .906 .743 .753 .825
LTR .800 .826 .916 .772 .794 .845
LTR+QualityFilter .800 .830 −− .768 .798 .850
LTR+Agg .860lotq .855lot .932lot .864lotq .847lotq .882lotq

ASRC+QualityFilter Combined+QualityFilter

NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

LM .770 .817 −− .746 .767 .836
Okapi .770 .821 −− .751 .767 .837
LTR .800 .830 −− .768 .798 .850
LTR+Agg .860lot .859lot −− .868lot .854lot .889lot

use NDCG@5 for ASRC+QualityFilter since after the removal of
low quality documents, there were some cases where the retrieved
list contained less than 5 (but at least 3) documents. The goal is
to study the effectiveness of our mixture model in both a “noisy”
setting with low quality documents (ASRC) and a cleaner setting in
that respect (ASRC+QualityFilter). These two types of evaluation
are conceptually reminiscent of those for Web retrieval with and
without spam removal [2]. We do not use the Combined dataset
here as it combines documents from two different competitions:
Raifer et al. [40] and Goren et al. [10]. Hence, there is no straight-
forward way to define the historical document sets used by the
TopRank and HighImp ranking-competition aware models.

We see in Table 3 that the mixture model with HighImp, Mix-
HighImp, is always the best performing method in the table. This
finding attests to the merit of analyzing rank promotion patterns
over historical corpus snapshots (HighImp) to estimate presumed
ranking competition effects. More generally, it attests to the merit
in devising relevance estimates that are ranking-incentives aware
(RQ1; refer back to Section 1). Using previous top-ranked docu-
ments (Mix-TopRank) to that end is less effective. We note that
while Mix-HighImp does not improve over ParsimonLM in a statis-
tically significant manner14, it posts more statistically significant
improvements over the other methods: Mix-HighImp statistically
significantly improves over each of LM and PastTFLM in two rele-
vant comparisons, while ParsimonLM does not improve at all over
these methods in a statistically significant manner; Mix-HighImp
statistically significant improves over SepLM in 4 relevant compar-
isons while ParsimonLM does so in 3 relevant comparisons. Among
all methods in Tables 2 and 3, Mix-HighImp is the only one that
attains statistically significant improvements over LM.

The findings presented above attest to the effectiveness of our
mixture model in both noisy (with low quality documents) and

14We found that in the third round for ASRC+QualityFilter, Mix-HighImp statistically
significantly improved over ParsimonLM. For the other rounds and for ASRC, there
were no per-round statistically significant differences.

cleaner settings. Specifically, using a ranking-incentives aware gen-
erator results in themost effective performance in Table 3. Although
the performance gains over a standard language model, LM, are
not big, our mixture model’s performance dominates that of LM as
opposed to the other baselines. Furthermore, recall that LM was
recently shown to be one of the most effective methods evaluated
over the ASRC dataset; specifically, with respect to neural retrieval
methods [54].

Finally, we note that to the best of our knowledge, the document
language model induced using the mixture model is the first re-
ported in the literature to account for adversarial effects, and more
specifically, for those that result from ranking incentives.

5.3 The Learning-To-Rank Framework
Table 4 presents the performance of our LTR+Agg approach (Section
3.2) that adds the Agg features to those used in LTR. The Agg
features quantify historical changes of LTR’s feature values and
the similarities of a document to its past snapshots. In the top
table in Table 4 we use LTR+QualityFilter as an additional baseline:
removing from the LTR retrieved lists documents defined as of
low quality. This approach reflects the potential of using query-
independent document quality estimates as in Web retrieval [2].
Hence, LTR+QualityFilter in the top table is equivalent to LTR in
the bottom table where low quality documents were filtered out
from the entire collection. We do not report NDCG@5 for ASRC
when filtering out low quality documents as some of the retrieved
lists contain less than five (but at least three) documents. This does
not happen for Combined.

We see in Table 4 that our LTR+Agg approach consistently and
statistically significantly outperforms LTR. This attests to the ef-
fectiveness of the Agg features that quantify historical content
changes of the document. More generally, this finding provides
further support to the potential merit in devising relevance esti-
mates that are ranking-incentives aware (RQ1). The effectiveness of
LTR+Agg over corpora from which low quality documents were fil-
tered out (ASRC+QualityFilter and Combined+QualityFilter) attests
to the complementary nature of “low quality/spam” and ranking-
incentivized content effects (RQ3).

Table 4 shows that LTR+Agg also consistently and significantly
outperforms all other baselines: LM, Okapi and LTR+QualityFilter.
The statistically significant superiority to LTR+QualityFilter in the
top table is of special importance since LTR+QualityFilter is based
on removal of documents judged by humans to be of low relevance
grade and of low quality (RQ2).

All the performance numbers reported thusfar were averages
over the competitions’ rounds. Figure 1 depicts the performance
of LTR and LTR+Agg across the rounds of the competitions for
ASRC and Combined. The figures for ASRC+QualityFilter and Com-
bined+QualityFilter, and for NDCG@1 and NDCG@3, show the
same patterns and are omitted as they convey no additional insight.
We see in Figure 1 that the performance of LTR+Agg dominates
that of LTR across the rounds.

In summary, LTR+Agg is highly effective on corpora with and
without low quality documents (RQ1, RQ2). It also outperforms hu-
man filtering of low-quality documents with low relevance grades
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Figure 1: The NDCG@5 performance of LTR and LTR+Agg
along the competitions’ rounds.

Table 5: The top-10 single-feature rankers. Left and right
arrows refer to ASRC and Combined, respectively. ’↓’ and ’↑’
indicate positive and negative feature polarity, respectively.
Boldface: the best result in a column. ’a’: a statistically sig-
nificant difference with LTR+Agg.

ASRC Combined

NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

LTR+Agg .860 .855 .932 .864 .847 .882

↓↓Sim-Min .822a .833a .923 .836a .837 .870a
↓↓Sim-Avg .809a .839 .920a .849 .824a .869a
↑↑LEN-Std .819 .830a .917a .853 .833 .857a
↑↑NormTF-Std .805a .810a .910a .857 .823 .857a
↑↑BERT-Std .766a .808a .903a .844 .818a .864
↓↓Sim-Max .791a .840 .919a .779a .796a .847a
↓↓LEN .782a .834 .916a .740a .806a .848a
↓↓LEN-Avg .804a .831a .918 .760a .798a .845a
↓↓LEN-Min .818a .828a .919a .780a .808a .844a
↓↓ENT-Avg .799a .827a .916a .816 .801a .845a

(RQ2). Furthermore, the performance transcends that of the unsu-
pervised mixture-model-based approach studied above.
Feature Analysis. We performed ablation tests for LTR+Agg by
removing one feature at a time. We ordered the 49 features in
descending order of the average NDCG@5 relative drop over ASRC
and Combined. The ten first features are Sim-Max, BERT-Max,
Sim-Min, NormTF-Avg, FracStop-Max, TF, ENT-Min, LEN-Max,
Okapi-Std and LEN-Min. Nine out of these ten are Agg features
and not the original LTR features (TF is the exception). This finding
further attests to the effectiveness of the Agg features.

The performance drop for Sim-Max, the maximal similarity of a
current document snapshot with its past snapshots, is statistically
significant for all evaluation measures over the two datasets. The
only other case of a statistically significant drop was for NDCG@3
of the TF feature over ASRC. Overall, these findings attest to a
considerable amount of redundancy between features.

We next use each feature alone as a ranking method. We refer to
a feature as of positive polarity if ranking by descending order of the
values it assigns to documents is superior (in terms of NDCG@5)
to ranking by ascending order; if the reverse holds, the feature is
of negative polarity. We select for the feature the better ranking of
the two. Table 5 presents the 10 features whose average NDCG@5
ranking performance over the two datasets is the highest.

Table 5 shows that LTR+Agg is the best performing model. The
vast majority of improvements over single features are statistically

significant. All features are statistically significantly outperformed
by LTR+Agg in at least three out of the six (2 datasets × 3 evaluation
measures) relevant comparisons.

We also see in Table 5 that 9 out of the top-10 are Agg features.
This finding echoes that in the ablation tests and further attests to
the effectiveness of the Agg features. Sim-Min, Sim-Avg and Sim-
Max are among these top-10 features and are all of positive polarity;
Sim-Max was the top ranked in the ablation tests. These findings
mean that high similarity of a document with its past snapshots is
an indicator for relevance. Another finding is along the same lines:
all X-Std features are of negative polarity. That is, high variance in
feature values across historical snapshots is an indicator for non-
relevance. This finding could potentially be attributed to the fact
that significant changes of documents along time might be a signal
for increased attempts to improve rankings.

We note that the standard features LM, Okapi and TF, used in
LTR and which are not among the top-10 presented in Table 5,
are of positive polarity; i.e., surface level similarity of the current
document snapshot to the query is a relevance indicator.

6 CONCLUSIONS AND FUTUREWORK
We addressed the ad hoc retrieval task in competitive retrieval
settings where document authors might be ranking incentivized;
i.e., theymight modify their documents’ content to improve ranking.
We devised content-based relevance estimation methods using two
major retrieval frameworks: language modeling and feature-based
learning-to-rank (LTR). The methods are not tailored to a specific
type of content manipulation strategy.

Empirical evaluation demonstrated the merits of our most effec-
tive relevance estimates, specifically, with respect to those which
were not designed to address ranking-incentivized content manip-
ulations (RQ1, Section 1). We also demonstrated the merits of our
learning-to-rank-based approach with respect to using (human cre-
ated) query-independent document quality estimates (RQ2) and
their integration (RQ3).

Our learning-to-rank (LTR) approach is based on manual feature
engineering. Devising representation-based learning approaches
that model temporal document modifications is a future direction.
Furthermore, the LTR approach, in contrast to the mixture-model-
based method, relies on past snapshots of a document. Thus, it is
not suitable for cold start settings. A potential future direction to
address this issue is to utilize information induced from similar
documents with past snapshots.

The rankers we employed do not change along time, although
the information they utilize changes based on temporal dynamics.
Continuously adapting the rankers to strategic document modifica-
tions (cf., work on classification [34]) is left for future work.
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